Doklady Earth Sciences

, Volume 479, Issue 2, pp 518–523 | Cite as

Parental Sources of High–Alumina Alkaline Melts: Nd, Sr, Pb, and O Isotopic Evidence from the Devonian Kiya–Shaltyr Gabbro–Urtite Intrusion, South Siberia

  • V. V. Vrublevskii
  • I. F. Gertner
  • A. V. Chugaev
Geochemistry

Abstract

The isotope geochemistry (εNd(t) 4.8–5.4, 206Pb/204Pb in 18.05–18.36, 207Pb/204Pbin 15.53–15.57, 208Pb/204Pb in 37.59–37.83, 87Sr/86Sr(t) 0.7048–0.7057, δ18OSMOW 8–10.5‰) and trace element composition of the Kiya–Shaltyr gabbro–urtite pluton allow us to suggest a heterogeneous source and complex geodynamic settings of the Devonian alkali magmatism in the Kuznetsk Alatau. It is assumed that its evolution took place under conditions of partial mingling of matter of the depleted (PREMA) and enriched (EM) mantle with crustal contamination of the evolving melt. Such an interaction could have been a result of superposition of a mantle plume and an active margin (OIB and IAB components). In fold belts this led to the formation of hybrid high-alumina foidoite magmas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Andreeva, Alkaline Magmatism of Kuznetsk Alatau (Nauka, Moscow, 1968) [in Russian].Google Scholar
  2. 2.
    V. V. Vrublevskii, I. F. Gertner, G. Gutierres-Alonso, et al., Geol. Geofiz. 55 (11), 1598–1614 (2014).Google Scholar
  3. 3.
    V. V. Vrublevskii, I. F. Gertner, P. A. Tishin, and T. B. Bayanova, Dokl. Earth Sci. 459 (2), 1576–1581 (2014).CrossRefGoogle Scholar
  4. 4.
    V. V. Vrublevskii, Russ. Geol. Geophys. 56 (3), 379–401 (2015).CrossRefGoogle Scholar
  5. 5.
    V. V. Yarmolyuk and V. I. Kovalenko, Petrology 11 (6), 504–531 (2003).Google Scholar
  6. 6.
    L. V. Kungurtsev, N. A. Berzin, A. Yu. Kazanskii, and D. V. Metelkin, Russ. Geol. Geophys. 42 (7), 1042–1051 (2001).Google Scholar
  7. 7.
    V. V. Vrublevsky, I. F. Gertner, A. G. Vladimirov, et al., Dokl. Earth Sci. 398 (7), 990–994 (2004).Google Scholar
  8. 8.
    A. Zindler and S. R. Hart, Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).CrossRefGoogle Scholar
  9. 9.
    S. R. Hart, E. H. Hauri, L. A. Oschmann, and J. A. Whitehead, Science 256, 517–520 (1992).CrossRefGoogle Scholar
  10. 10.
    E. H. Hauri, J. A. Whitehead, and S. R. Hart, J. Geophys. Res. 99, 24275–24300 (1994).CrossRefGoogle Scholar
  11. 11.
    J. C. Stacey and J. D. Kramers, Earth Planet. Sci. Lett. 26, 207–221 (1975).CrossRefGoogle Scholar
  12. 12.
    R. E. Zartman and S. M. Haines, Geochim. Cosmochim. Acta 52, 1327–1339 (1988).CrossRefGoogle Scholar
  13. 13.
    A. Stracke, A. W. Hofmann, and S. R. Hart, Geochem., Geophys., Geosyst. 6 (5), 1–20 (2005).CrossRefGoogle Scholar
  14. 14.
    R. E. Zartman and L. N. Kogarko, Dokl. Earth Sci. 454 (1), 25–28 (2014).CrossRefGoogle Scholar
  15. 15.
    M. J. Lee, J. I. Lee, S. D. Hur, et al., Lithos 91, 250–261 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Vrublevskii
    • 1
  • I. F. Gertner
    • 1
  • A. V. Chugaev
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations