Doklady Earth Sciences

, Volume 479, Issue 2, pp 543–546 | Cite as

Numerical Analysis of Surge Phenomena, Currents, and Pollution Transport in the Sea of Azov

Oceanology

Abstract

Dynamic processes and features of transformation of pollution in the Sea of Azov, caused by the action of a real wind and atmospheric pressure in the presence of stationary currents, are studied using a three-dimensional nonlinear hydrodynamic model. On the basis of numerical calculations, conclusions are reached about the influence of the velocities of stationary background currents on maximal deviations and the velocities of nonstationary currents generated by wind fields in the SKIRON model. It is shown that the combined effect of the constant wind and wind in the SKIRON atmospheric model leads to a significant expansion of the polluted area and to a longer dispersion time compared to the effects of solely stationary currents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Matishov, Regularities of Ecosystem Processes in Azov Sea (Nauka, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    G. G. Matishov and D. G. Matishov, Herald Russ. Acad. Sci. 83 (6), 490–498 (2013).CrossRefGoogle Scholar
  3. 3.
    G. G. Matishov, S. V. Berdnikov, L. A. Bespalova, O. V. Ivlieva, A. E. Tsygankova, S. M. Khartiev, A. R. Ioshpa, L. V. Kropyanko, K. S. Sushko, I. V. Sheverdyaev, and E. V. Bespalova, Modern Hazardous Exogenous Processes in Azov Sea Coastal Zone (Southern Federal Univ., Rostov-on-Don, 2015) [in Russian].Google Scholar
  4. 4.
    Yu. G. Filippov, Tr. Gos. Okeanogr. Inst., No. 103, 87–94 (1970).Google Scholar
  5. 5.
    I. A. Tret’yakova, A. L. Chikin, and S. V. Berdnikov, in Ecology. Economics. Informatics, Vol. 1: System Analysis and Simulation of Economic and Ecological Systems (Southern Federal Univ., Rostov-on-Don, 2015), pp. 288–291 [in Russian].Google Scholar
  6. 6.
    I. N. Shabas, A. L. Chikin, and L. G. Chikina, Izv. Yuzhn. Fed. Univ., Tekh. Nauki, No. 12 (161), 200–210 (2014).Google Scholar
  7. 7.
    A. L. Chikin, Mat. Model. 21 (12), 152–160 (2009).Google Scholar
  8. 8.
    A. F. Blumberg and G. L. Mellor, Coastal Estuarine Sci. 4, 1–16 (1987).CrossRefGoogle Scholar
  9. 9.
    V. A. Ivanov, L. V. Cherkesov, and T. Ya. Shul’ga, Dynamic Processes and their Influence onto Pollutants Distribution and Transformation in Restricted Sea Basins (Scientific and Production Center EKOSI-Gidrofizika, Sevastopol, 2010) [in Russian].Google Scholar
  10. 10.
    G. Kallos, S. Nickovic, A. Papadopoulos, et al., in Proc. Symp. on Regional Weather Prediction on Parallel Computer Environments (Univ. of Athens, Athens, 1997), pp. 109–122.Google Scholar
  11. 11.
    L. V. Cherkesov, V. A. Ivanov, and S. M. Khartiev, Introduction into Hydrodynamics and Wave Theory (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].Google Scholar
  12. 12.
    G. L. Mellor and T. Yamada, Rev. Geophys. Space Phys. 20 (4), 851–875 (1982).CrossRefGoogle Scholar
  13. 13.
    J. Smagorinsky, Mon. Weather Rev. 91, 99–164 (1963).CrossRefGoogle Scholar
  14. 14.
    W. Wannawong, U. W. Humphries, P. Wongwises, and S. Vongvisessomjai, Int. J. Comput. Math. Sci., No. 5, 44–53 (2011).Google Scholar
  15. 15.
    G. G. Matishov, D. G. Matishov, S. V. Berdnikov, V. V. Sorokina, S. Levitus, and I. V. Smolyar, Dokl. Earth Sci. 422 (7), 1101–1104 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Marine Hydrophysical InstituteRussian Academy of SciencesSevastopol, Republic of CrimeaRussia

Personalised recommendations