Doklady Earth Sciences

, Volume 473, Issue 1, pp 350–353 | Cite as

Experimental study of the apatite–carbonate–H2O system at P = 0.5 GPa and T = 1200°C: Efficiency of fluid transport in carbonatite

  • N. S. Gorbachev
  • Yu. B. Shapovalov
  • A. V. Kostyuk
Geochemistry
  • 30 Downloads

Abstract

Partitioning of more than 35 elements between coexisting phases in the apatite (Apt)–carbonate (Carb)–H2O system was studied experimentally at P = 0.5 GPa and T = 1200°C for estimation of the efficiency of fluid transport during the formation of carbonatite in platform alkaline intrusions. The interphase partition coefficients of elements (D) range from n × 10–2 to 100 and higher, which provides evidence for their effective fractionation in the system. The following elements were distinguished: (1) Apt-compatible (REE, Y, Th, Cu, and W), which are concentrated in apatite; (2) hydrophile (Na, K, Mg, Ba, S, Mn, Pb, U, W, and Re), which are preferably distributed into fluid or the carbonate melt. The high hydrophilicity of alkali metals controls the alkaline character of postmagmatic fluids and related metasomatic rocks, whereas the high D(Fl/Apt) and D(Fl/LCarb) for S, Zr, W, Re, and U show their high potential in relation to U–W–Re mineralization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Kostov, Mineralogy (Oliver and Boyd, Edinburgh, London, 1968).Google Scholar
  2. 2.
    A. A. Frolov, A. V. Tolstov, and S. V. Belov, Russian Carbonatite Deposits (Priroda, Moscow, 2003) [in Russian].Google Scholar
  3. 3.
    M. V. Seredkin, I. A. Zotov, and P. I. Karchevskii, Magmatic Complexes Metallogeny of Intraplate Geodynamic Environment (GEOS, Moscow, 2001) [in Russian].Google Scholar
  4. 4.
    V. I. Starostin and P. A. Ignatov, Geology of Mineral Resources (Akad. Proekt, Moscow, 2004) [in Russian].Google Scholar
  5. 5.
    I. V. Veksler and H. Keppler, Contrib. Mineral. Petrol. 138, 27–34 (2000).CrossRefGoogle Scholar
  6. 6.
    W. Song, C. Xu, I. V. Veksler, and J. Kynicky, Contrib. Mineral. Petrol. 171, 1–12 (2016).CrossRefGoogle Scholar
  7. 7.
    S. Klemme and C. Dalpe, Am. Mineral. 88, 639–646 (2003).CrossRefGoogle Scholar
  8. 8.
    H. Keune, Chimica–ein Wissensspeicher (Deutscher Verlag für Grundstoffindustrie, Leipzig, 1972).Google Scholar
  9. 9.
    J. C. Ayers and E. B. Watson, Chem. Geol. 10, 299–314 (1993).CrossRefGoogle Scholar
  10. 10.
    J. Konzett and D. Frost, J. Petrol. 50 (11), 2043–2062 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. S. Gorbachev
    • 1
  • Yu. B. Shapovalov
    • 1
  • A. V. Kostyuk
    • 1
  1. 1.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations