Doklady Earth Sciences

, Volume 473, Issue 1, pp 318–322 | Cite as

Se and In minerals in the submarine oxidation zone of a massive sulfide orebody of the molodezhnoe copper–zinc massive sulfide deposit, Southern Urals

  • N. R. Ayupova
  • V. V. Maslennikov
  • V. A. Kotlyarov
  • S. P. Maslennikova
  • L. V. Danyushevsky
  • R. Large
Geochemistry
  • 37 Downloads

Abstract

For the first time, extremely high Se and In contents were determined for the pinches of massive sulfide orebodies that are composed of small-clastic layered sulfide sediments transformed during submarine supergenesis. Se (clausthalite and naumannite) and In (roquesite) minerals were found. Hydrothermal chalcopyrite, a significant amount of which is present in the clasts of paleohydrothermal black smoker chimneys, was the source of Se. Most of the amount of In was contributed during dissolution of clasts of hydrothermal sphalerite, which is unstable in the submarine oxidation zone in the presence of oxidized pyrite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Akinfiev and B. R. Tagirov, Geol. Ore Deposits 48 (5), 402–414 (2006).CrossRefGoogle Scholar
  2. 2.
    V. V. Zaikov, Volcanism and Sulphide Hills of Paleoceanic Margins (Nauka, Moscow, 2006) [in Russian].Google Scholar
  3. 3.
    V. V. Maslennikov and V. V. Zaikov, Dokl. Akad. Nauk SSSR 319 (6), 1434–1437 (1991).Google Scholar
  4. 4.
    V. V. Maslennikov, A. Yu. Lein, S. P. Maslennikova, and Yu. A. Bogdanov, Litosfera, No. 3, 153–162 (2010).Google Scholar
  5. 5.
    G. Auclair, Y. Fouquet, and M. Bohn, Can. Mineral. 87, 577–587 (1987).Google Scholar
  6. 6.
    N. J. Cook, C. L. Ciobanu, and T. Williams, Hydrometallurgy 108, 226–228 (2011).CrossRefGoogle Scholar
  7. 7.
    E. V. Belogub, K. A. Novoselov, V. A. Yakovleva, and B. Spiro, Ore Geol. Rev. 33, 239–254 (2008).CrossRefGoogle Scholar
  8. 8.
    I. B. Butler and R. W. Nesbitt, Earth Planet. Sci. Lett. 167, 335–345 (1999).CrossRefGoogle Scholar
  9. 9.
    Sh. Ishihara and Yu. Endo, Bull. Geol. Surv. Jpn. 58 (1–2), 7–22 (2007).CrossRefGoogle Scholar
  10. 10.
    M. D. Hannington, W. Bleeker, and I. Kjarsgaard, in Economic Geology Monograph 10, Ed. by M. D. Hannington and C. T. Barrie (Econ. Geol. Publ., Littleton, CO, 1999), pp. 163–224.Google Scholar
  11. 11.
    D. Layton-Matthews, M. I. Leybourne, J. M. Peter, S. D. Scott, B. Cousens, and B. Eglington, Geochim. Cosmochim. Acta 117, 313–331 (2013).CrossRefGoogle Scholar
  12. 12.
    V. V. Maslennikov, N. R. Ayupova, R. J. Herrington, L. V. Danyushevskiy, and R. R. Large, Ore Geol. Rev. 47, 5–41 (2012).CrossRefGoogle Scholar
  13. 13.
    V. V. Maslennikov, S. P. Maslennikova, R. R. Large, L. V. Danyushevskiy, R. J. Herrington, and C. J. Stanley, Mineral. Petrol. 107 (1), 67–99 (2013).CrossRefGoogle Scholar
  14. 14.
    U. Schwarz-Schampera and P. M. Herzig, Indium (Springer, Berlin, Heidelberg, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. R. Ayupova
    • 1
    • 2
  • V. V. Maslennikov
    • 1
    • 2
  • V. A. Kotlyarov
    • 1
  • S. P. Maslennikova
    • 1
  • L. V. Danyushevsky
    • 3
  • R. Large
    • 3
  1. 1.Institute of Mineralogy, Ural BranchRussian Academy of SciencesMiass, Chelyabinsk oblastRussia
  2. 2.National Research South Urals State University, Miass BranchMiass, Chelyabinsk oblastRussia
  3. 3.CODES CenterUniversity of TasmaniaHobartAustralia

Personalised recommendations