Skip to main content
Log in

The system ilmenite–carbonatite–carbon in the origin of diamond: Correlation between the titanium content and diamond potential of kimberlite

  • Geochemistry
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Experimental studies of melting relations in the system ilmenite–K–Na–Mg–Fe–Ca carbonatite–carbon at 8 GPa and 1600°C provide evidence for the effect of liquid immiscibility between ilmenite and carbonatite melts. It is shown that the solubility of ilmenite in carbonatitic melts is negligible and does not depend on its concentration in experimental samples within 25–75 wt %. However, carbonatite–carbon melts are characterized by a high diamond-forming efficiency. This means that the correlation between the concentration of TiO2 and diamond content is problematic for mantle chambers and requires further, more complex, experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. A. Bogatikov, V. A. Kononova, A. A. Nosova, and A. V. Kargin, Petrology 17 (6), 606–625 (2009).

    Article  Google Scholar 

  2. V. B. Vasilenko, L. G. Kuznetsova, A. V. Tolstov, and V. A. Minin, Geochem. Int. 50 (12), 988–1006 (2012).

    Article  Google Scholar 

  3. V. K. Garanin, A. V. Bovkun, K. V. Garanin, et al., Microcrystalline Oxides from Russian Kimberlites (Geos, Moscow, 2009) [in Russian].

    Google Scholar 

  4. J. B. Dawson, Kimberlites and Their Xenoliths (Springer, Berlin, New York, 1980).

    Book  Google Scholar 

  5. R. H. Mitchell, Lithos 10, 29–37 (1977).

    Article  Google Scholar 

  6. S. E. Haggerty, Phys. Chem. Earth 9, 295–307 (1975).

    Article  Google Scholar 

  7. A. D. Patchen, L. A. Taylor, and N. Pokhilenko, Am. Mineral. 82, 991–1000 (1997).

    Article  Google Scholar 

  8. S. Anashkin, A. Bovkun, L. Bindi, et al., Mineral. Mag. 77 (3), 327–334 (2013).

    Article  Google Scholar 

  9. M. Prinz, D. V. Manson, P. F. Hlava, and K. Keil, Phys. Chem. Earth 9, 797–816 (1975).

    Article  Google Scholar 

  10. A. E. Moore, Contrib. Mineral. Petrol. 95, 245–253 (1987).

    Article  Google Scholar 

  11. N. V. Sobolev and E. S. Yefimova, Int. Geol. Rev. 42, 758–767 (2000).

    Article  Google Scholar 

  12. Yu. A. Litvin, Geol. Ore Deposits 54 (6), 443–457 (2012).

    Article  Google Scholar 

  13. A. V. Bobrov and Yu. A. Litvin, Rus. Geol. Geophys. 50 (12), 1221–1233 (2009).

    Article  Google Scholar 

  14. Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, Geochem. Int. 46 (6), 531–553 (2008).

    Article  Google Scholar 

  15. Yu. A. Litvin, P. G. Vasil’ev, A. V. Bobrov, et al., Geochem. Int. 50 (9), 726–759 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, A.V. Bovkun, N.A. Androsova, V.K. Garanin, 2017, published in Doklady Akademii Nauk, 2017, Vol. 473, No. 1, pp. 65–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Bovkun, A.V., Androsova, N.A. et al. The system ilmenite–carbonatite–carbon in the origin of diamond: Correlation between the titanium content and diamond potential of kimberlite. Dokl. Earth Sc. 473, 286–290 (2017). https://doi.org/10.1134/S1028334X17030059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X17030059

Navigation