Doklady Earth Sciences

, Volume 473, Issue 1, pp 286–290 | Cite as

The system ilmenite–carbonatite–carbon in the origin of diamond: Correlation between the titanium content and diamond potential of kimberlite

  • Yu. A. Litvin
  • A. V. Bovkun
  • N. A. Androsova
  • V. K. Garanin
Geochemistry
  • 38 Downloads

Abstract

Experimental studies of melting relations in the system ilmenite–K–Na–Mg–Fe–Ca carbonatite–carbon at 8 GPa and 1600°C provide evidence for the effect of liquid immiscibility between ilmenite and carbonatite melts. It is shown that the solubility of ilmenite in carbonatitic melts is negligible and does not depend on its concentration in experimental samples within 25–75 wt %. However, carbonatite–carbon melts are characterized by a high diamond-forming efficiency. This means that the correlation between the concentration of TiO2 and diamond content is problematic for mantle chambers and requires further, more complex, experimental studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Bogatikov, V. A. Kononova, A. A. Nosova, and A. V. Kargin, Petrology 17 (6), 606–625 (2009).CrossRefGoogle Scholar
  2. 2.
    V. B. Vasilenko, L. G. Kuznetsova, A. V. Tolstov, and V. A. Minin, Geochem. Int. 50 (12), 988–1006 (2012).CrossRefGoogle Scholar
  3. 3.
    V. K. Garanin, A. V. Bovkun, K. V. Garanin, et al., Microcrystalline Oxides from Russian Kimberlites (Geos, Moscow, 2009) [in Russian].Google Scholar
  4. 4.
    J. B. Dawson, Kimberlites and Their Xenoliths (Springer, Berlin, New York, 1980).CrossRefGoogle Scholar
  5. 5.
    R. H. Mitchell, Lithos 10, 29–37 (1977).CrossRefGoogle Scholar
  6. 6.
    S. E. Haggerty, Phys. Chem. Earth 9, 295–307 (1975).CrossRefGoogle Scholar
  7. 7.
    A. D. Patchen, L. A. Taylor, and N. Pokhilenko, Am. Mineral. 82, 991–1000 (1997).CrossRefGoogle Scholar
  8. 8.
    S. Anashkin, A. Bovkun, L. Bindi, et al., Mineral. Mag. 77 (3), 327–334 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Prinz, D. V. Manson, P. F. Hlava, and K. Keil, Phys. Chem. Earth 9, 797–816 (1975).CrossRefGoogle Scholar
  10. 10.
    A. E. Moore, Contrib. Mineral. Petrol. 95, 245–253 (1987).CrossRefGoogle Scholar
  11. 11.
    N. V. Sobolev and E. S. Yefimova, Int. Geol. Rev. 42, 758–767 (2000).CrossRefGoogle Scholar
  12. 12.
    Yu. A. Litvin, Geol. Ore Deposits 54 (6), 443–457 (2012).CrossRefGoogle Scholar
  13. 13.
    A. V. Bobrov and Yu. A. Litvin, Rus. Geol. Geophys. 50 (12), 1221–1233 (2009).CrossRefGoogle Scholar
  14. 14.
    Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, Geochem. Int. 46 (6), 531–553 (2008).CrossRefGoogle Scholar
  15. 15.
    Yu. A. Litvin, P. G. Vasil’ev, A. V. Bobrov, et al., Geochem. Int. 50 (9), 726–759 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. A. Litvin
    • 1
  • A. V. Bovkun
    • 2
  • N. A. Androsova
    • 2
  • V. K. Garanin
    • 2
    • 3
  1. 1.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia

Personalised recommendations