Advertisement

Doklady Earth Sciences

, Volume 473, Issue 1, pp 313–317 | Cite as

Average annual structure and transport of waters eastward of Greenland by the system of western boundary currents

  • S. V. Gladyshev
  • V. S. Gladyshev
  • A. V. Sokov
  • S. K. Gulev
  • L. A. Pautova
  • A. B. Demidov
Oceanology
  • 55 Downloads

Abstract

The results of calculating the values of average annual transport of waters eastward of Greenland in 2007–2015 by the system of western boundary currents are discussed. It is shown that the values of the average annual transport of waters estimated by different methods for measuring the velocity of currents and the different calculation methods differ by 20%. The role of friction in the bottom jets of the northwestern deep water, which were discovered for the first time during long-term observations, is discussed. The considerable contribution of the shelf water cascading across the continental slope to the formation of the structure and transport of the East Greenland Current is established. The significant influence of vertical mixing on the physicochemical properties of the bottom layer waters is shown. The biological arguments of the contribution made by the Irminger current and the subsurface waters to the formation of the northwestern deep water are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bacon and P. Saunders, J. Phys. Oceanogr. 40, 815–829 (2010). doi 10.1175/2009JPO4091.1CrossRefGoogle Scholar
  2. 2.
    M. Bersch, Deep-Sea Res. 42, 1583–1607 (1995). doi 10.1016/0967-0637(95)00071-DCrossRefGoogle Scholar
  3. 3.
    J. A. Brearley, R. S. Pickart, and H. Valdimarsson, Deep-Sea Res. 63, 1–19 (2012). doi 10.1016/j.dsr.2012.01.001CrossRefGoogle Scholar
  4. 4.
    C. Gourcuff, P. Lherminier, H. Mercier, and P. Y. Le Traon, J. Atmos. Oceanic Technol. 28, 1324–1337 (2011). doi 10.1175/2011JTECH0818.1Google Scholar
  5. 5.
    N. P. Holliday, S. Bacon, J. Allen, and E. L. McDonagh, J. Phys. Oceanogr. 39, 1854–1870 (2009). doi 10.1175/2009JP04160.1CrossRefGoogle Scholar
  6. 6.
    P. Lherminier, H. Mercier, and C. Gourcuff, J. Geophys. Res. 112, C07003 (2007). doi 10.1029/2006JC003716CrossRefGoogle Scholar
  7. 7.
    P. Lherminier, H. Mercier, and T. Huck, Deep-Sea Res. 57, 1374–1391 (2010). doi 10.1016/j.dsr.2010.07.009CrossRefGoogle Scholar
  8. 8.
    A. Sarafanov, A. Falina, and H. Mercier, J. Geophys. Res. 117, C01014 (2012). doi 10.1029/2011JC007572CrossRefGoogle Scholar
  9. 9.
    R. Dickson, S. Dye, and S. Jonsson, in Arctic-Subarctic Ocean Fluxes (Springer, New York, 2008), p. 443–474. doi doi 10.1007/978-1-4020-6774-7_20CrossRefGoogle Scholar
  10. 10.
    D. A. Sutherland and R. S. Pickart, Prog. Oceanogr. 78, 58–77 (2008). doi 10.1016/j.pocean.2007.09.006CrossRefGoogle Scholar
  11. 11.
    R. Pickart, D. J. Torres, and P. S. Fratantoni, J. Phys. Oceanogr. 35, 1037–1053 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Falina, A. Sarafanov, and H. Mercier, J. Phys. Oceanogr. 42, 2254–2267 (2012). doi 10.1175/JPO-D- 12-012.1CrossRefGoogle Scholar
  13. 13.
    W.-J. von Appen, I. Koszalha, and R. S. Pickart, Deep Sea Res. 92, 75–84 (2014). doi 10.1016/j.dsr.2014.06.002CrossRefGoogle Scholar
  14. 14.
    L. G. Loitsyanskii, Fluid Mechanics (Gostekhizdat, Moscow, 1950) [in Russian].Google Scholar
  15. 15.
    T. J. Smayda and B. Mitchell-Innes, Mar. Biol. (Heidelberg, Ger.) 25, 195–202 (1974). doi 10.1007/BF00394965CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Gladyshev
    • 1
  • V. S. Gladyshev
    • 1
  • A. V. Sokov
    • 1
  • S. K. Gulev
    • 1
  • L. A. Pautova
    • 1
  • A. B. Demidov
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations