Skip to main content
Log in

Research into the Surface Phase Transition of Semibounded Antiferromagnetic Systems via Computer Simulation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Monte-Carlo computer simulation is employed to investigate the surface phase transition (PT) in the 3D semibounded antiferromagnetic Ising model. Simulation is performed at different ratios of exchange integrals on the system surface and in its bulk. The dependence between the PT temperature and the distance to the surface is studied. When the ratio of exchange integrals is less than 1.38, the PT temperature is found to increase with distance from the surface. A comparison with the results of a real experiment is carried out. The simulation results are demonstrated to be in qualitative and quantitative agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Kaganov, Zh. Eksp. Teor. Fiz. 62 (3), 1190 (1972).

    Google Scholar 

  2. D. L. Mills, Phys. Rev. 3 (11), 3887 (1971).

    Article  Google Scholar 

  3. M. I. Kaganov and N. S. Karpinskaya, Zh. Eksp. Teor. Fiz. 76 (6), 2143 (1979).

    Google Scholar 

  4. H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997).

    Article  Google Scholar 

  5. S. V. Belim, J. Exp. Theor. Phys. (JETP) 103 (4), 611 (2006).

    Article  Google Scholar 

  6. S. V. Belim, J. Exp. Theor. Phys. (JETP) 106 (4), 773 (2008).

    Article  Google Scholar 

  7. G. Rau, Phys. Rev. Lett. 58, 2714 (1987).

    Article  Google Scholar 

  8. G. Rau, Appl. Phys. A 49, 579 (1987).

    Article  Google Scholar 

  9. R. D. McGrath, R. M. Mirzababayev, and J. C. Walker, Phys. Lett. A 67 (2), 149 (1987).

    Article  Google Scholar 

  10. A. S. Kamzin and L. A. Grigor’ev, Pis’ma Zh. Eksp. Teor. Fiz. 16 (16), 38 (1990).

    Google Scholar 

  11. A. S. Kamzin and L. A. Grigor’ev, Pis’ma Zh. Eksp. Teor. Fiz. 57 (9), 538 (1993).

    Google Scholar 

  12. S. Gota, M. Gautier-Soyer, and M. Sacchi, Phys. Rev. B 64, 224407 (2001).

    Article  Google Scholar 

  13. A. S. Kamzin and L. A. Grigor’ev, Fiz. Tverd. Tela 36 (5), 1271 (1994).

    Google Scholar 

  14. A. S. Kamzin and R. G. Glyantsev, Phys. Solid State 45 (12), 2309 (2003).

    Article  Google Scholar 

  15. D. P. Landau and K. Binder, Phys. Rev. B 17, 2328 (1978).

    Article  Google Scholar 

  16. C. Ruge and F. Wagner, Phys. Rev. B 52, 4209 (1995).

    Article  Google Scholar 

  17. M. Vendruscolo, M. Rovere, and A. Fasolino, Europhys. Lett. 20, 547 (1992).

    Article  Google Scholar 

  18. S. V. Belim and T. A. Koval’, Phys. Met. Metallogr. 115 (9), 843 (2014).

    Article  Google Scholar 

  19. S. V. Belim and T. A. Koval’, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (6), 1130 (2015).

    Article  Google Scholar 

  20. P. Ruiz-Díaz and V. S. Stepanyuk, J. Phys. D: Appl. Phys., No. 47, 105006 (2014).

    Article  Google Scholar 

  21. O. O. Brovko, P. Ruiz-Díaz, T. R. Dasa, et al., J. Phys.: Condens. Matter, No. 26, 093001 (2014).

    Google Scholar 

  22. C. Yu. Lin, J.-L. Li, and Y. H. Hsieh, Phys. Rev. X, No. 2, 021012 (2012).

    Google Scholar 

  23. P. Ruiz-Díaz, T. R. Dasa, and V. S. Stepanyuk, Phys. Rev. Lett. 110, 267203 (2013).

    Article  Google Scholar 

  24. I. Bernal-Villamil and S. Gallego, Phys. Rev. B 94, 075431 (2016).

    Article  Google Scholar 

  25. A. Ochi, K. Watanabe, M. Kiyama, et al., J. Phys. Soc. Jpn. 50 (9), 2777 (1981).

    Article  Google Scholar 

  26. F. U. Hillebrecht, H. Ohldag, N. B. Weber, et al., Phys. Rev. Lett. 86 (15), 3419 (2001).

    Article  Google Scholar 

  27. A. S. Kamzin, L. A. Grigor’ev, and S. A. Kamzin, Fiz. Tverd. Tela 37 (1), 66 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belim.

Additional information

Original Russian Text © S.V. Belim, E.V. Trushnikova, 2018, published in Poverkhnost’, 2018, No. 9, pp. 102–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belim, S.V., Trushnikova, E.V. Research into the Surface Phase Transition of Semibounded Antiferromagnetic Systems via Computer Simulation. J. Surf. Investig. 12, 923–926 (2018). https://doi.org/10.1134/S1027451018050154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050154

Keywords

Navigation