Skip to main content
Log in

Abstract

X-ray topography is a set of X-ray diffraction techniques that make it possible to see images of defects, to determine their type and location in the volume of the crystal structure or on its surface, and to measure their main characteristics. The review discusses the possibilities, limitations, and prospects of X-ray topography methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Guinier, Theorie et technique de la radiocristallographie (Dunod, Paris, 1956).

    Google Scholar 

  2. Ya. S. Umanskii, X-Ray Radiography of Metals (Metallurgiya, Moscow, 1967) [in Russian].

    Google Scholar 

  3. V. I. Iveronova and G. P. Revkevich, Theory of X-ray Scattering (Moscow State Univ., Moscow, 1972) [in Russian].

    Google Scholar 

  4. W. Berg, Naturwissenschaften 19, 391 (1931).

    Article  Google Scholar 

  5. W. Berg, Z. Kristallogr. 89 (3), 286 (1934).

    Google Scholar 

  6. K. Kohra, J. Phys. Soc. Jpn. 17, 589 (1962).

    Article  Google Scholar 

  7. C. S. Barrett, Trans. AIME 161, 15 (1945).

    Google Scholar 

  8. L. G. Schulz, Trans. AIME 200, 1082 (1954).

    Google Scholar 

  9. T. Fujiwara, Mem. Def. Acad., Math., Phys., Chem. Eng. (Yokosuka, Jpn.) 2 (5), 127 (1963).

    Google Scholar 

  10. T. Fujiwara, S. Dohi, and T. Takeda, Mem. Def. Acad., Math., Phys., Chem. Eng. (Yokosuka, Jpn.) 3 (2), 17 (1963).

    Google Scholar 

  11. A. P. Turner, T. Vreeland, and D. P. Pope, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 24 (4), 452 (1968).

    Article  Google Scholar 

  12. U. Bonse, Z. Phys. 153 (2), 278 (1958).

    Article  Google Scholar 

  13. K. Kohra and S. Kikuta, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 24, 200 (1968).

    Article  Google Scholar 

  14. G. Borrmann, Z. Phys. 42, 157 (1941).

    Google Scholar 

  15. A. R. Lang, Acta Crystallogr. 12, 249 (1959).

    Article  Google Scholar 

  16. V. M. Gundyrev, N. V. Belova, and V. O. Esin, USSR Inventor’s Certificate No. 300817, Byull. Izobret., No. 13 (1971).

    Google Scholar 

  17. I. M. Shmyt’ko, V. Sh. Shekhtman, Yu. A. Ossipyan, and N. S. Afonikova, Ferroelectrics 96, 151 (1989).

    Article  Google Scholar 

  18. Yu. A. Osip’yan, V. Sh. Shekhtman, and I. M. Shmyt’ko, Pis’ma Zh. Eksp. Teor. Fiz. 47 (10), 501 (1988).

    Google Scholar 

  19. N. S. Afonikova, V. V. Borovkov, and I. M. Shmyt’ko, Fiz. Tverd. Tela 29 (3), 813 (1987).

    Google Scholar 

  20. N. S. Afonikova, V. Sh. Shekhtman, and I. M. Shmyt’ko, Fiz. Tverd. Tela 27 (11), 3201 (1985).

    Google Scholar 

  21. E. V. Suvorov and I. A. Smirnova, Usp. Fiz. Nauk 185 (9), 897 (2015).

    Article  Google Scholar 

  22. V. M. Kaganer, N. O. Krylova, V. L. Indenbom, and I. L. Shul’pina, Fiz. Tverd. Tela 28 (8), 2343 (1986).

    Google Scholar 

  23. I. L. Shulpina, J. Appl. Phys. A 26 (4), 82 (1993).

    Google Scholar 

  24. E. V. Suvorov and I. L. Shul’pina, Poverkhnost, No. 7, 3 (2001).

    Google Scholar 

  25. I. A. Prokhorov, I. L. Shulpina, V. I. Strelov, et al., Phys. Status Solidi A 6, 1902 (2005).

    Article  Google Scholar 

  26. I. L. Shulpina and E. V. Suvorov, Bull. Russ. Acad. Sci.: Phys. 74 (11), 1488 (2010).

    Article  Google Scholar 

  27. I. L. Shul’pina, S. S. Rouvimov, and R. N. Kyutt, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4 (1), 32 (2010).

    Article  Google Scholar 

  28. I. L. Shul’pina, V. V. Ratnikov, V. A. Kozlov, et al., Tech. Phys. 59 (10), 1566 (2014).

    Article  Google Scholar 

  29. L. I. Datsenko, V. B. Molodkin, and M. E. Osinovskii, Dynamic X-ray Scattering by means of Real Crystals (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  30. L. N. Danil’chuk and T. A. Smorodina, Fiz. Tverd. Tela 7 (4), 1245 (1965).

    Google Scholar 

  31. L. N. Danil’chuk and V. I. Nikitenko, Fiz. Tverd. Tela 9 (7), 2027 (1967).

    Google Scholar 

  32. L. N. Danil’chuk, Fiz. Tverd. Tela 11, 3085 (1969).

    Google Scholar 

  33. L. N. Danil’chuk, Vestn. Novgorod. Gos. Univ., No. 1, 12 (1995).

    Google Scholar 

  34. A. N. Builov and L. N. Danil’chuk, Tech. Phys. Lett. 28 (9), 762 (2002).

    Article  Google Scholar 

  35. K. Kohra, M. Ando, and T. Matsushita, Nucl. Instrum. Methods 152, 161 (1978).

    Article  Google Scholar 

  36. A. Authier and A. R. Lang, J. Appl. Phys. 35, 1956 (1964).

    Article  Google Scholar 

  37. Y. Epelboin and A. Authier, Acta Crystallogr., Sect. A: Found. Crystallogr. 39, 767 (1983).

    Article  Google Scholar 

  38. E. V. Suvorov, V. I. Polovinkina, V. I. Nikitenko, and V. L. Indenbom, Phys. Status Solidi 26 (1), 385 (1974).

    Article  Google Scholar 

  39. M. Yoshmatsu, X-Ray Diffraction Micrography, The Lang Method (Rigacu Denki, Tokyo, 1964).

    Google Scholar 

  40. S. Sh. Gendelev, L. M. Dedukh, V. I. Nikitenko, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (6), 1210 (1971).

    Google Scholar 

  41. N. Kato, J. Phys. Soc. Jpn. 19 (1), 67 (1964).

    Article  Google Scholar 

  42. N. Kato, J. Phys. Soc. Jpn. 19 (6), 971 (1964).

    Article  Google Scholar 

  43. A. Authier, Dynamical Theory of X-Ray Diffraction (Science Publ., Oxford, 2001).

    Google Scholar 

  44. V. L. Indenbom and F. N. Chukhovskii, Usp. Fiz. Nauk 107 (2), 229 (1972).

    Article  Google Scholar 

  45. V. L. Indenbom and F. N. Chukhovskii, Kristallografiya 16 (6), 1101 (1971).

    Google Scholar 

  46. V. G. Kohn, Crystallogr. Rep. 52 (4), 598 (2007).

    Article  Google Scholar 

  47. Y. Ando, J. R. Patel, and N. Kato, J. Appl. Phys. 44 (10), 4405 (1973).

    Article  Google Scholar 

  48. V. L. Indenbom, V. I. Nikitenko, E. V. Suvorov, and V. M. Kaganer, Phys. Status Solidi A 46 (1), 379 (1978).

    Article  Google Scholar 

  49. I. L. Shul’pina, Zavod. Lab., Diagn. Mater. 66 (2), 25 (2000).

    Google Scholar 

  50. M. G. Mil’vidskii, Yu. A. Osip’yan, I. A. Smirnova, et al., Poverkhnost, No. 6, 11 (2001).

    Google Scholar 

  51. I. L. Shul’pina, Zavod. Lab., Diagn. Mater. 73 (5), 30 (2007).

    Google Scholar 

  52. E. Rouv and J. Uiver, Usp. Fiz. Nauk 126 (2), 269 (1978).

    Google Scholar 

  53. I. M. Ternov, Usp. Fiz. Nauk 165 (4), 429 (1995).

    Article  Google Scholar 

  54. H. Winick, J. Synchrotron Radiat. 5, 168 (1998).

    Article  Google Scholar 

  55. G. V. Fetisov, Synchrotron Emission. Methods for Researching Matter Structure (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  56. Synchrotron Light Sources and Free-Electron Lasers. Accelerator Physics, Instrumentation and Science Applications, Ed. by E. J. Jaeschke, (Springer, 2016).

  57. T. Tuomi, K. Naukkarinen, and P. Rabe, Phys. Status Solidi A 25 (1), 93 (1974).

    Article  Google Scholar 

  58. B. K. Tanner and M. A. Phil, X-Ray Diffraction Topography (Pergamon Press, New York, 1966).

    Google Scholar 

  59. D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography (Taylor & Francis, London, 1998).

    Google Scholar 

  60. J. Baruchel and J. Hartwig, J. Synchrotron Radiat. 9, 107 (2002).

    Article  Google Scholar 

  61. A. Zarka, B. Capelle, J. Detaint, and J. Schwartzel, J. Appl. Crystallogr. 21, 967 (1988).

    Article  Google Scholar 

  62. A. E. Voloshin, Doctoral Dissertation in Mathematics and Physics (A. V. Shubnikov Institute of Crystallography Russ. Acad. Sci., Moscow, 2013).

    Google Scholar 

  63. A. E. Blagov, P. A. Prosekov, A. V. Targonskii, and Ya. A. Eliovich, Crystallogr. Rep. 60 (2), 167 (2015).

    Article  Google Scholar 

  64. A. E. Blagov, Yu. V. Pisarevskii, and M. V. Koval’chuk, Crystallogr. Rep. 61 (2), 170 (2016).

    Article  Google Scholar 

  65. A. R. Lang and K. Reifsnide, Appl. Phys. Lett. 15 (8), 162 (1969).

    Article  Google Scholar 

  66. J. Chikawa and I. Fujmoto, Appl. Phys. Lett. 13 (11), 18 (1968).

    Article  Google Scholar 

  67. E. V. Suvorov, Elektron. Prom-st. 6, 49 (1979).

    Google Scholar 

  68. A. Koch, C. Raven, P. Spanne, and A. Snigirev, J. Opt. Soc. Am. A 15, 1940 (1998).

    Article  Google Scholar 

  69. Y. Amemiya, J. Synchrotron Radiat. 2, 13 (1995).

    Article  Google Scholar 

  70. S. M. Grunera, W. Mark, and E. F. Eikenberry, Rev. Sci. Instrum. 73 (8), 121 (2002).

    Google Scholar 

  71. R. C. Harrison, Nucl. Instrum. Methods Phys. Res., Sect. A 347, 529 (1994).

    Article  Google Scholar 

  72. S. Takagi, Acta Crystallogr. 15, 1311 (1962).

    Article  Google Scholar 

  73. D. Taupen, Bull. Soc. Fr. Mineral. Cristallogr. 87, 469 (1964).

    Google Scholar 

  74. E. V. Suvorov, Methods for Researching Real Structure and Composition of Materials (National Univ. of Science and Technology MISiS, Moscow, 2011) [in Russian].

    Google Scholar 

  75. V. E. Prun, A. V. Buzmakov, M. V. Chukalina, et al., Autom. Remote Control (Engl. Transl.) 74 (10), 1670 (2013).

    Article  Google Scholar 

  76. E. V. Suvorov and I. A. Smirnova, Tech. Phys. Lett. 42 (9), 955 (2016).

    Article  Google Scholar 

  77. J. C. H. Spense, Experimental High-Resolution Electron Microscopy (Claredon Press, Oxford, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Suvorov.

Additional information

Original Russian Text © E.V. Suvorov, 2018, published in Poverkhnost’, 2018, No. 9, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvorov, E.V. X-Ray Topography: Yesterday, Today, and Prospects for the Future. J. Surf. Investig. 12, 835–852 (2018). https://doi.org/10.1134/S1027451018050026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050026

Keywords

Navigation