Advertisement

Self-Assembling Polymer–Nanodiamond Composite Coatings for Vacuum Cathodes

  • P. V. Lebedev-Stepanov
  • A. T. Dideykin
  • S. N. Chvalun
  • A. L. Vasiliev
  • T. E. Grigoryev
  • A. N. Korovin
  • S. I. Belousov
  • S. P. Molchanov
  • G. A. Yurasik
  • A. Ya. Vul’
Article
  • 20 Downloads

Abstract

The principles of the formation of detonation nanodiamond–polymer thin-film nanocomposites which are promising materials for highly cost-effective field electron vacuum cathodes are studied for the first time. The coatings are deposited onto oriented substrates (Ni, Si) in the processes of self-assembly from an evaporating aqueous solution by the spin-coating technology. Field electron emission studies show that the threshold voltage exceeds values typical for nanocarbon structures by more than ten times. At the same time, it is nearly ten times lower than the work function in macroscopic diamond or graphite. An improvement in the stability of the emission properties of the coating in the presence of polymers in comparison with the deposition of films from a solution of nanodiamond crystallites without polymers is established.

Keywords

thin-film nanocomposites nanodiamond coatings spin-coating technology field electron emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vul’, K. Reich, E. Eidelman, et al., Adv. Sci. Lett. 3, 1 (2010).CrossRefGoogle Scholar
  2. 2.
    A. N. Zhukov, F. R. Gareeva, A. E. Aleksenskii, and A. Ya. Vul’, Colloid J. 72 (5), 640 (2010).CrossRefGoogle Scholar
  3. 3.
    A. I. Lyamkin, E. A. Petrov, A. P. Ershov, et al., Dokl. Akad. Nauk SSSR 302, 611 (1988).Google Scholar
  4. 4.
    N. R. Greiner, D. S. Philips, and F. Volk, Nature 333, 440 (1988).CrossRefGoogle Scholar
  5. 5.
    V. Yu. Dolmatov, in Ultrananocrystal Line Diamond: Syntheses, Properties and Applications, Ed. by O. Shenderova and D. Gruen (William Andrew, New York, 2006), p.379.Google Scholar
  6. 6.
    O. V. Venidiktova, T. M. Valova, V. A. Barachevsky, et al., Opt. Spectrosc. 122 (5), 729 (2017).CrossRefGoogle Scholar
  7. 7.
    P. V. Lebedev-Stepanov, S. P. Molchanov, A. L. Vasil’ev, et al., Tech. Phys. 61 (3), 401 (2016).CrossRefGoogle Scholar
  8. 8.
    O. A. Pyshkina, B. Kim, A. N. Korovin, et al., Synth. Met. 158 (21–24), 999 (2008).CrossRefGoogle Scholar
  9. 9.
    N. Shang, P. Papakonstantinou, P. Wang, et al., ACS Nano 3 (4), 1032 (2009).CrossRefGoogle Scholar
  10. 10.
    A. A. Kuznetzov, S. B. Lee, M. Zhang, et al., Carbon 48, 41 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Lebedev-Stepanov
    • 1
    • 2
  • A. T. Dideykin
    • 3
  • S. N. Chvalun
    • 4
  • A. L. Vasiliev
    • 1
    • 4
  • T. E. Grigoryev
    • 4
  • A. N. Korovin
    • 4
  • S. I. Belousov
    • 4
  • S. P. Molchanov
    • 5
  • G. A. Yurasik
    • 1
  • A. Ya. Vul’
    • 3
  1. 1.Center of Photochemistry, Federal Research Center “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University “Moscow Engineering Physics Institute”MoscowRussia
  3. 3.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.National Research Center “Kurchatov Institute”MoscowRussia
  5. 5.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations