Skip to main content
Log in

Abstract

Over recent decades, the diffraction of thermal neutrons has become a powerful tool for solving various actual problems of materials science. To carry out scientific investigations on this theme, a neutron time-of-flight Fourier diffractometer FSD was developed and has been successfully operated for many years at the IBR-2 pulsed reactor in the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna. To ensure high resolution of the instrument, a special correlation technique is used, i.e., a fast Fourier chopper for modulation of the primary-neutron-beam intensity and the reverse time-of-flight method for data acquisition. The current state of the FSD diffractometer and its capabilities are described and examples of performed experiments are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Bokuchava, V. L. Aksenov, A. M. Balagurov, et al., Appl. Phys. A: Mater. Sci. Process. 74, 86 (2002). http://dx.doi.org/10.1007/s003390201750.

    Article  Google Scholar 

  2. A. J. Allen, M. T. Hutchings, and C. G. Windsor, Adv. Phys. 34 (4), 445 (1985). http://dx.doi.org/10.1080/00018738500101791.

    Article  Google Scholar 

  3. G. D. Bokuchava, I. V. Papushkin, V. I. Bobrovskii, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (1), 44 (2015). http://dx.doi.org/10.1134/S1027451015010048.

    Article  Google Scholar 

  4. A. M. Balagurov, I. A. Bobrikov, G. D. Bokuchava, et al., Mater. Charact. 109, 173 (2015). http://dx.doi.org/10.1016/j.matchar.2015.09.025.

    Article  Google Scholar 

  5. P. Hiismäki, H. Pöyry, and A. Tiitta, J. Appl. Crystallogr. 21, 349 (1988). http://dx.doi.org/10.1107/S0021889888003024.

    Article  Google Scholar 

  6. G. D. Bokuchava, I. V. Papushkin, A. V. Tamonov, et al., Rom. J. Phys. 61 (3–4), 491 (2016). http://www.nipne.ro/rjp/2016_61_3-4/0491_0505.pdf.

    Google Scholar 

  7. G. Bokuchava, I. Papushkin, and P. Petrov, C. R. Acad. Bulg. Sci. 67 (6), 763 (2014). http://www.proceedings. bas.bg/content/2014_6_cntent.html.

    Google Scholar 

  8. G. D. Bokuchava, P. Petrov, and I. V. Papushkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (6), 1143 (2016). https://doi.org/10.1134/S1027451016050463.

    Article  Google Scholar 

  9. P. Petrov, G. Bokuchava, I. Papushkin, et al., Proc. SPIE 10226, 102260D (2017). http://dx.doi.org/10.1117/12.2261802.

    Google Scholar 

  10. G. D. Bokuchava, Rom. J. Phys. 61 (5–6), 903 (2016). www.nipne.ro/rjp/2016_61_5-6/0903_0925.pdf.

    Google Scholar 

  11. G. D. Bokuchava, J. Schreiber, N. Shamsutdinov, et al., Phys. B (Amsterdam, Neth.) 276–278, 884 (2000). http://dx.doi.org/10.1016/S0921-4526(99)01276-4.

    Article  Google Scholar 

  12. G. D. Bokuchava, J. Schreiber, N. R. Shamsutdinov, et al., Mater. Sci. Forum 308–311, 1018 (1999). http://dx.doi.org/10.4028/www.scientific.net/MSF.308-311.1018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Bokuchava.

Additional information

Original Russian Text © G.D. Bokuchava, I.V. Papushkin, 2018, published in Poverkhnost’, 2018, No. 2, pp. 5–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokuchava, G.D., Papushkin, I.V. Neutron Time-of-Flight Stress Diffractometry. J. Surf. Investig. 12, 97–102 (2018). https://doi.org/10.1134/S102745101801024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101801024X

Keywords

Navigation