Advertisement

Analysis of the Three-Dimensional Model of Diffusion of Minority Charge Carriers Generated by an Electron Probe in a Heterogeneous Semiconductor Material by Means of Projection Methods

  • E. V. Seregina
  • M. A. Stepovich
  • A. M. Makarenkov
Article
  • 5 Downloads

Abstract

Algorithms for using the Galerkin projection method and the projection least squares method to analyze the three-dimensional model of the diffusion of minority charge carriers generated by an electron probe in a semiconductor material are presented. The results obtained using these methods are compared with the analytical solution. An estimate of the error is given, and the condition for the computation stability of the projection least squares method in the form of the limiting relation is obtained.

Keywords

electron probe semiconductor distribution of minority charge carriers projection methods stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Van Roosbroeck, J. Appl. Phys. 26 (1), 380 (1955).CrossRefGoogle Scholar
  2. 2.
    E. V. Seregina, A. M. Makarenkov, and M. A. Stepovich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (3), 468 (2009).CrossRefGoogle Scholar
  3. 3.
    E. V. Seregina, A. M. Makarenkov, and M. A. Stepovich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (2), 330 (2012).CrossRefGoogle Scholar
  4. 4.
    M. A. Stepovich, A. G. Khokhlov, and M. G. Snopova, Proc. SPIE 5398, 159 (2004).CrossRefGoogle Scholar
  5. 5.
    I. V. Burylova, V. I. Petrov, M. G. Snopova, and M. A. Stepovich, Semiconductors 41 (4), 444 (2007).CrossRefGoogle Scholar
  6. 6.
    E. V. Seregina, M. A. Stepovich, and A. M. Makarenkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (6), 1077 (2013).CrossRefGoogle Scholar
  7. 7.
    E. V. Seregina, M. A. Stepovich, and A. M. Makarenkov, Usp. Prikl. Fiz. 1 (3), 354 (2013).Google Scholar
  8. 8.
    N. N. Mikheev, V. I. Petrov, and M. A. Stepovich, Izv. Akad. Nauk SSSR, Ser. Fiz. 55 (8), 1474 (1991).Google Scholar
  9. 9.
    A. A. Belov, V. I. Petrov, and M. A. Stepovich, Izv. Ross. Akad. Nauk, Ser. Fiz. 66 (9), 1317 (2002).Google Scholar
  10. 10.
    P. K. Suetin, Classical Orthogonal Polynomials (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    S. V. Lapin and N. D. Egupov, Theory of Matrix Operators and its Application to Problems on Automatic Control (Bauman Moscow State Technical Univ., Moscow, 1997) [in Russian].Google Scholar
  12. 12.
    V. A. Abilov, M. V. Abilov, and M. K. Kerimov, Comput. Math. Math. Phys. 55 (7), 1094 (2015).CrossRefGoogle Scholar
  13. 13.
    S. M. Nikol’skii, Approach for Multivariable Functions and Embedding Theorems (Nauka, Moscow, 1969) [in Russian].Google Scholar
  14. 14.
    V. K. Lashchenov, Izv. Vyssh. Uchebn. Zaved., Mat., No. 1 (224), 44 (1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Seregina
    • 1
  • M. A. Stepovich
    • 2
  • A. M. Makarenkov
    • 1
  1. 1.Bauman Moscow State Technical University, Kaluga BranchKalugaRussia
  2. 2.Tsiolkovskii Kaluga State UniversityKalugaRussia

Personalised recommendations