On the Radiation Hardness of Thermostabilizing BaTiZrO3 Coatings in situ Deposited by the Detonation Method

  • M. M. Mikhailov
  • A. A. Lovickij
  • A. E. Smolin


The radiation hardness of three types of BaTiZrO3 coatings obtained by synthesis from the powder mixtures BaTiO3 + ZrO3, BaCO3 + TiO2 + ZrO3 (micron size), and BaCO3 + TiO2 + ZrO3 (nanopowder) deposited by the detonation method on metal substrates is investigated. The high radiation resistance of all types of coatings to the action of electrons with an energy of 30 keV and a fluence of up to 4 × 1016 cm–2 is established in measurements of the diffuse reflection spectra in vacuum at the place of irradiation (in situ).


barium titanates detonation method coatings temperature stabilization reflection spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).Google Scholar
  2. 2.
    M. M. Mikhailov, V. Yu. Ul’yanitskii, V. A. Vlasov, A. N. Sokolovskiy, and A. A. Lovitskii, Surf. Coat. Technol. 319, 70 (2017).CrossRefGoogle Scholar
  3. 3.
    Chundong Li, Jinpeng Lv, Shulong Yao, Jiangang Hu, and Zhiqiang Liang, Nucl. Instrum. Methods Phys. Res., Sect. B 295, 11 (2013).CrossRefGoogle Scholar
  4. 4.
    Chundong Li, Jinpeng Lv, Bo Zhou, and Zhiqiang Liang, Phys. Status Solidi A 8 (209), 1538 (2012).CrossRefGoogle Scholar
  5. 5.
    M. M. Mikhailov, A. N. Sokolovskii, and S. A. Yur’ev, Dokl. Tomsk. Gos. Univ. Sist. Upr. Radioelektron., No. 4, 13 (2006)Google Scholar
  6. 5a.
    M. M. Mikhailov, A. N. Sokolovskii, and S. A. Yur’ev, Dokl. Tomsk. Gos. Univ. Sist. Upr. Radioelektron., No. 12, 78 (2014).Google Scholar
  7. 6.
    V. Yu. Ul’yanitskii, Uprochnyayushchie Tekhnol. Pokrytiya, No. 10, 36 (2013).Google Scholar
  8. 7.
    V. M. Rogozhin, Yu. V. Smirnov, and V. Ya. Petrov, Poroshk. Metall., No. 7, 87 (1982).Google Scholar
  9. 8.
    Lu Songtao, Li Hang, W. Xiaohong, and Ji. Lixiang, in Proc. 11th Int. Conference “Protection of Materials and Structures from Space Environment” ICPMSE-11 (Lijian, May 19–23, 2014), p.125.Google Scholar
  10. 9.
    L. G. Kositsyn, M. M. Mikhailov, N. Ya. Kuznetsov, and M. I. Dvoretskii, Prib. Tekh. Eksp., No. 4, 176 (1985).Google Scholar
  11. 10.
    ASTM E-903-96: Standard Test Method for Solar Absorptance, Reflectance and Transmittance of Materials Using Integrating Spheres (2005).Google Scholar
  12. 11.
    Haowei Peng, Phys. Lett. 372, 1527 (2008).CrossRefGoogle Scholar
  13. 12.
    Naichng Yu and J. Woods Halley, Phys. Rev. B 51, 4768 (1995).CrossRefGoogle Scholar
  14. 13.
    E. G. Seebauer, Mater. Sci. Eng., R 55, 57 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. M. Mikhailov
    • 1
  • A. A. Lovickij
    • 1
  • A. E. Smolin
    • 1
  1. 1.Tomsk University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations