Excitation Energies of V n O m + and Nb n O m + Clusters Sputtered under Ion Bombardment

  • N. Kh. Dzhemilev
  • S. F. Kovalenko
  • S. E. Maksimov
  • O. F. Tukfatullin
  • Sh. T. Khojiev
Article
  • 3 Downloads

Abstract

The decay of V n O m + and Nb n O m + clusters sputtered under bombardment of the surfaces of vanadium and niobium with Xe+ ions and oxygen inflow is investigated by secondary-ion mass spectrometry. Based on experimental data, the excitation energy is calculated within the framework of the theory of unimolecular reactions. It is demonstrated that the numerical values of the specific excitation energy of V n O m + and Nb n O m + within the accuracy of the procedure do not depend significantly on the number of atoms that make up the clusters, nor on their type.

Keywords

ion sputtering secondary ion mass spectrometry cluster fragmentation vanadium oxide niobium oxide unimolecular reactions excitation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. N. Makarov, Usp. Fiz. Nauk 178 (4), 337 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Wucher, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 52, 405 (2006).Google Scholar
  3. 3.
    H. M. Urbassek and W. O. Hofer, Mat.-Fys. Medd.-K. Dan. Vidensk. Selsk. 43, 97 (1993).Google Scholar
  4. 4.
    J. S. Fletcher and Ch. Szakal, TOF-SIMS: Surface Analysis by Mass Spectrometry, Ed. by J. C. Vickerman and D. Brigs (IM Publ., Chichester, 2013).Google Scholar
  5. 5.
    S. N. Morozov and U. Kh. Rasulev, Tech. Phys. 54 (7), 1041 (2009).CrossRefGoogle Scholar
  6. 6.
    B. Czerwinski and A. Delcorte, J. Phys. Chem. C 117, 3595 (2013).CrossRefGoogle Scholar
  7. 7.
    B. Czerwinski, Z. Postawa, B. J. Garrison, and A. Delcorte, Nucl. Instrum. Methods Phys. Res., Sect. B 303, 22 (2013).CrossRefGoogle Scholar
  8. 8.
    D. N. Makarov and V. I. Matveev, in Proc. 22nd Int. Conference “Interaction Between Ions and Surface VIP-2015” (Moscow, 2015), Vol. 1, p.284.Google Scholar
  9. 9.
    E. Armon, A. Bekkerman, Y. Cohen, J. Bernstein, B. Tsipinyuk, and E. Kolodney, Phys. Rev. Lett. 113, 027604 (2014).CrossRefGoogle Scholar
  10. 10.
    S. E. Maksimov, N. Kh. Dzhemilev, S. F. Kovalenko, O. F. Tukfatullin, and Sh. T. Khozhiev, Bull. Russ. Acad. Sci.: Phys. 78 (6), 508 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Wucher, A. D. Bekkerman, N. Kh. Dzhemilev, I. V. Veryovkin, and S. V. Verkhoturov, Nucl. Instrum. Methods Phys. Res., Sect. B 140 (3–4), 311 (1998).CrossRefGoogle Scholar
  12. 12.
    A. D. Bekkerman, N. Kh. Dzhemilev, and V. M. Rotstein, Surf. Interface Anal. 15, 587 (1990).CrossRefGoogle Scholar
  13. 13.
    N. Kh. Dzhemilev, L. F. Lifanova, S. E. Maksimov, and Sh. T. Khozhiev, Poverkhnost, No. 7, 68 (2006).Google Scholar
  14. 14.
    S. E. Maksimov, N. Kh. Dzhemilev, L. F. Lifanova, O. F. Tukfatullin, and Sh. T. Khozhiev, Poverkhnost, No. 5, 54 (2008).Google Scholar
  15. 15.
    N. Kh. Dzhemilev, S. F. Kovalenko, L. F. Lifanova, S. E. Maksimov, and Sh. T. Khozhiev, Bull. Russ. Acad. Sci.: Phys. 72 (7), 910 (2008).CrossRefGoogle Scholar
  16. 16.
    S. E. Maksimov, S. F. Kovalenko, O. F. Tukfatullin, Sh. T. Khozhiev, and N. Kh. Dzhemilev, Bull. Russ. Acad. Sci.: Phys. 76 (5), 527 (2012).CrossRefGoogle Scholar
  17. 17.
    N. Kh. Dzhemilev, S. F. Kovalenko, S. E. Maksimov, O. F. Tukfatullin, and Sh. T. Khozhiev, Uzb. Fiz. Zh. 15 (1–2), 1 (2013).Google Scholar
  18. 18.
    N. Kh. Dzhemilev, S. F. Kovalenko, S. E. Maksimov, O. F. Tukfatullin, and Sh. T. Khojiev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (2), 254 (2014).CrossRefGoogle Scholar
  19. 19.
    N. Kh. Dzhemilev, A. M. Goldenberg, I. V. Veriovkin, and S. V. Verkhoturov, Nucl. Instrum. Methods Phys. Res., Sect. B 114, 245 (1996).CrossRefGoogle Scholar
  20. 20.
    A. D. Bekkerman, N. Kh. Dzhemilev, S. V. Verkhoturov, I. V. Veryovkin, and A. Adriaens, Mikrochim. Acta, 15, 371 (1998).Google Scholar
  21. 21.
    P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley-Interscience, London, New York, 1972).Google Scholar
  22. 22.
    B. V. King, I. S. T. Tsong, and S. H. Lin, Int. J. Mass Spectrom. 78, 341 (1987).CrossRefGoogle Scholar
  23. 23.
    I. V. Verevkin, S. V. Verkhoturov, A. M. Gol’denberg, and N. Kh. Dzhemilev, Izv. Ross. Akad. Nauk, Ser. Fiz. 58 (4), 57 (1994).Google Scholar
  24. 24.
    C. E. Klots, Z. Phys. D: At., Mol. Clusters 5, 83 (1987).CrossRefGoogle Scholar
  25. 25.
    C. E. Klots, Z. Phys. D: At., Mol. Clusters 21, 335 (1991).CrossRefGoogle Scholar
  26. 26.
    N. Kh. Dzhemilev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (4), 654 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. Kh. Dzhemilev
    • 1
  • S. F. Kovalenko
    • 1
  • S. E. Maksimov
    • 1
  • O. F. Tukfatullin
    • 1
  • Sh. T. Khojiev
    • 1
  1. 1.Institute of Ion-Plasma and Laser TechnologiesAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan

Personalised recommendations