Advertisement

Optimization of Steel-Surface Hardening by Carbon Nanostructures Followed by Treatment with High-Intensity Energy Sources

  • G. S. Bocharov
  • A. V. Eletskii
  • A. V. Zakharenkov
  • O. S. Zilova
  • A. P. Sliva
  • E. V. Terentyev
  • S. D. Fedorovich
  • G. N. Churilov
Article

Abstract

The effect whereby a steel surface is modified by its covering with a nanocarbon material followed by fast electron- or laser-beam irradiation is studied. The initial material is low-carbon steel. Soot produced via the thermal sputtering of graphite electrodes in an electric arc with the subsequent extraction of fullerenes is used as the nanocarbon coating. Due to the fact that nanocarbon-coated samples are irradiated with a 60-keV electron beam, the material microhardness enhances considerably. The dependence between the microhardness and the irradiation energy is nonmonotonic and reaches its maximum (about 600 ± 20 HV) under the condition that the electron-irradiation energy is 460 J/cm2 and the intensity is 1.53 kW/cm2. This corresponds to a fourfold increase in the microhardness. Electron-beam irradiation of the treated surface is accompanied by a 1.5–2-fold decrease in the friction coefficient. Experimental results are compared with data obtained under laser irradiation of the nanocarbon-coated steel surface.

Keywords

metal surface hardening carbon nanomaterials laser irradiation electron-beam treatment microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Prikhod’ko, L. G. Petrova, and O. V. Chudina, Metallic and Physical Foundations of Strengthening Technologies (Mashinostroenie, Moscow, 2003) [in Russian].Google Scholar
  2. 2.
    A. V. Eletskii, Usp. Fiz. Nauk 177 (3), 233 (2007).CrossRefGoogle Scholar
  3. 3.
    O. Chernogorova, E. Drozdova, I. Ovchinnikova, A. Soldatov, and E. Ekimov, J. Appl. Phys. 111–112, 601 (2012).Google Scholar
  4. 4.
    O. P. Chernogorova, E. I. Drozdova, V. M. Blinov, and I. N. Ovchinnikova, Russ. Metall. (Engl. Transl.) 2011 (3), 221 (2011).CrossRefGoogle Scholar
  5. 5.
    O. P. Tchernogorova, O. A. Bannykh, V. M. Blinov, E. I. Drozdova, A. A. Dityat’ev, and N. N. Mel’nik, Mater. Sci. Eng. 299, 136 (2001).CrossRefGoogle Scholar
  6. 6.
    E. I. Drozdova, O. P. Chernogorova, T. I. Borodina, and V. V. Milyavskiy, Fullerenes, Nanotubes, Carbon Nanostruct., Nos. 5–6, 301 (2008).CrossRefGoogle Scholar
  7. 7.
    O. P. Chernogorova, E. I. Drozdova, V. M. Blinov, and N. A. Bul’enkov, Nanotechnol. Russ. 3 (5–6), 344 (2008).CrossRefGoogle Scholar
  8. 8.
    S. R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55 (1), 41 (2010).CrossRefGoogle Scholar
  9. 9.
    K. T. Kim, S. I. Cha, S. H. Hong, and S. H. Hong, Mater. Sci. Eng. 430, 27 (2006).CrossRefGoogle Scholar
  10. 10.
    Annual Report of Fraungofer Institute for Manufacturing Engineering and Automation IPA. 01.2013. http://www.energie.fraunhofer.de/en/bildmaterial/flyer_hannover-messe/ipa-fraunhoferinstitute-formanufacturing-engineering-and-automation/ipa-metal-matrixcomposites.Google Scholar
  11. 11.
    M. Reibold, P. Paufler, A. Levin, W. Kochmann, N. Pätzke, and D. C. Meyer, Nature 444, 286 (2006).CrossRefGoogle Scholar
  12. 12.
    G. N. Churilov, N. G. Vnukova, A. I. Dudnik, G. A. Glushchenko, I. A. Dubinina, U. E. Gulyaeva, A. A. Popov, and N. A. Samoylova, Tech. Phys. Lett. 42 (5), 475 (2016).CrossRefGoogle Scholar
  13. 13.
    Yu. M. Shirokov and N. P. Yudin, Nuclear Physics (Nauka, Moscow, 1972) [in Russian].Google Scholar
  14. 14.
    Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. S. Bocharov
    • 1
  • A. V. Eletskii
    • 1
  • A. V. Zakharenkov
    • 1
  • O. S. Zilova
    • 1
  • A. P. Sliva
    • 1
  • E. V. Terentyev
    • 1
  • S. D. Fedorovich
    • 1
  • G. N. Churilov
    • 2
  1. 1.National Research University “Moscow Power Engineering Institute”MoscowRussia
  2. 2.Kirensky Institute of Physics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations