Advertisement

Thermal Desorption Spectroscopy of Deformed and Undeformed Tungsten after Exposure to a High-Intensity Plasma Flow

  • A. M. Bakaeva
  • A. V. Bakaev
  • D. A. Terentyev
  • A. V. Dubinko
  • E. E. Zhurkin
Article
  • 8 Downloads

Abstract

As a result of the exposure of tungsten to a high-intensity plasma flow, it is established that the exposure of recrystallized and plastically deformed samples leads to fundamentally different mechanisms of confinement of plasma particles and associated deformation of the surface. The surface of the exposed deformed samples contains micrometer-sized ruptured blisters: an indication of the formation of subsurface bubbles on a grid of dislocations forming during deformation. Desorption spectra of both types of sample are decomposed into three peaks, corresponding to the detachment of plasma–gas particles from dislocations, deuterium-vacancy clusters, and pores. Plastic deformation, which leads to an increase in the dislocation density, does not change the position of the three peaks in the desorption spectra but increases their amplitude in comparison with the recrystallized material.

Keywords

dislocations plasma confinement tungsten hydrogen thermal-desorption spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Myers, M. I. Baskes, and H. K. Birnbaum, Rev. Mod. Phys. 64, 559 (1992).CrossRefGoogle Scholar
  2. 2.
    M. Daw and M. Baskes, Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
  3. 3.
    S. Matsuda and K. Tobita, J. Nucl. Sci. Technol. 50, 321 (2013).CrossRefGoogle Scholar
  4. 4.
    D. F. Johnson and E. A. Carter, J. Mater. Res. 25, 315 (2010).CrossRefGoogle Scholar
  5. 5.
    K. Heinola, T. Ahlgren, and K. Nordlund, Phys. Rev. B 82, 094102 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Difoggio and R. Gomer, Phys. Rev. Lett. 44, 1258 (1980).CrossRefGoogle Scholar
  7. 7.
    T. Ahlgren, K. Heinola, and K. Vortler, J. Nucl. Mater. 427, 152 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Rieth, S. L. Dudarev, and S. M. G. de Vicente, J. Nucl. Mater. 432, 482 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Terentyev, V. Dubinko, and A. Bakaev, Nucl. Fusion 54, 042004 (2014).CrossRefGoogle Scholar
  10. 10.
    I. Uytdenhouwen, M. Decreton, and T. Hirai, J. Nucl. Mater. 363–365, 1099 (2007).CrossRefGoogle Scholar
  11. 11.
    D. Hull and D. J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, Oxford, 2001).Google Scholar
  12. 12.
    H. Sheng, G. Van Oost, and E. Zhurkin, J. Nucl. Mater. 444, 214 (2014).CrossRefGoogle Scholar
  13. 13.
    G. Dieter, Mechanical Metallurgy (McGraw-Hill, London, 1988).Google Scholar
  14. 14.
    H. Mecking and U. F. Kocks, Acta Metall. 29, 1865 (1981).CrossRefGoogle Scholar
  15. 15.
    G. J. Van Rooij, V. P. Veremiyenko, and W. J. Goedheer, Appl. Phys. Lett. 90, 121501 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Van der Meiden, R. Al, and C. Barth, Rev. Sci. Instrum. 79, 013505 (2008).CrossRefGoogle Scholar
  17. 17.
    Y. Zayachuk, M. H. J.’t Hoen, and P. A. Z. Van Emmichoven, Nucl. Fusion 53, 013013 (2013).CrossRefGoogle Scholar
  18. 18.
    W. M. Shu, E. Wakai, and T. Yamanishi, Nucl. Fusion 47, 201 (2007).CrossRefGoogle Scholar
  19. 19.
    C. H. Skinner, A. A. Haasz, and V. K. Alimow, Fusion Sci. Technol. 54, 891 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Zayachuk, M. H. J.’t Hoen, and P. A. Z. Van Emmichoven, Nucl. Fusion 52, 103021 (2012).CrossRefGoogle Scholar
  21. 21.
    O. V. Ogorodnikova, J. Roth, and M. Mayer, J. Appl. Phys. 103, 034902 (2008).CrossRefGoogle Scholar
  22. 22.
    V. Dubinko, P. Grigorev, and A. Bakaev, J. Phys.: Condens. Matter 26, 395001 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Bakaeva
    • 1
    • 2
  • A. V. Bakaev
    • 1
    • 3
  • D. A. Terentyev
    • 1
  • A. V. Dubinko
    • 1
    • 2
  • E. E. Zhurkin
    • 3
  1. 1.Belgian Nuclear Research CenterMolBelgium
  2. 2.Ghent UniversityGhentBelgium
  3. 3.St. Petersburg Polytechnic State UniversitySt. PetersburgRussia

Personalised recommendations