Universal Function for the Calculation of Broadening of Absorption Lines of the H2S Molecule by Monoatomic Gases

Abstract

A universal analytical model is proposed for calculating coefficients γ of broadening of absorption lines of the H2S molecule by inert gas atoms A (helium, neon, argon, krypton, and xenon). In this model, only one parameter depends on the broadening atom A; other parameters are common for all atoms. This parameter determines the ratio γ(A)/γ(A′) for the A and A′ atoms. The model parameters are determined from values of γ calculated for the fundamental bands ν1, ν2, and ν3 of the H2S molecule, as well as from known experimental values of γ. Values of γ calculated using the model are compared with available experimental data. For some lines from the ν1 and ν3 bands, there is a significant discrepancy between the experiment and calculation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    J. Waschull, F. Kuhnemann, and B. Sumpf, “Self-, air-, and helium broadening in the ν2 band of H2S,” J. Mol. Spectrosc. 165, 150–158 (1994).

    ADS  Article  Google Scholar 

  2. 2

    B. Sumpf, I. Meusel, and H. D. Kronfeldt, “Noble gas broadening in fundamental bands of H2S,” J. Mol. Spectrosc. 184, 51–55 (1997).

    ADS  Article  Google Scholar 

  3. 3

    V. I. Starikov, “Noble gas broadening calculations for fundamental bands of H2S,” J. Comp. Methods Sci. Eng 10, 599–608 (2010).

    MATH  Google Scholar 

  4. 4

    A. Kissel, B. Sumpf, H. D. Kronfeldt, B. A. Tikhomirov, and Yu. N. Ponomarev, “Molecular-gas-pressure-induced line-shift and line-broadening in the ν2-band of H2S,” J. Mol. Spectrosc. 216, 1–10 (2002).

    Article  Google Scholar 

  5. 5

    G. D. Tejwani and E. S. Yeung, “Pressure broadened linewidths of hydrogen sulfide,” J. Quant. Spectrosc. Radiat. Transfer 17, 323–326 (1997).

    ADS  Article  Google Scholar 

  6. 6

    V. I. Starikov and A. E. Protasevich, “Broadening of absorption lines of the ν2 band of the H2S molecule by the pressure of atmospheric gases,” Opt. Spectrosc. 101 (4), 523–521 (2006).

    ADS  Article  Google Scholar 

  7. 7

    B. Sumpf, I. Meusel, and H. D. Kronfeldt, “Self- and air-broadening in the ν1 and ν3 bands of H2S,” J. Mol. Spectrosc. 177, 143–145 (1996).

    ADS  Article  Google Scholar 

  8. 8

    A. Kissel, H. D. Kronfeldt, B. Sumpf, Yu. N. Ponomarev, I. V. Ptashnik, and B. A. Tichomirov, “Investigation of line profiles in the ν2 band of H2S,” Spectrochim. Acta A 55, 2007–2013 (1999).

    ADS  Article  Google Scholar 

  9. 9

    D. R. Willey, D. N. Bittner, and F. C. De Lucia, “Pressure broadening cross sections for the H2S–He System in the temperature region between 4.3 and 1.8 K,” J. Mol. Spectrosc. 134, 240–242 (1989).

    ADS  Article  Google Scholar 

  10. 10

    D. C. Flatin, T. M. Goyette, M. M. Beaky, C. D. Ball, and F. C. De Lucia, “Rotational state dependence of collision induced line broadening and shift at low temperature,” J. Chem. Phys. 110, 2087–2098 (1999).

    ADS  Article  Google Scholar 

  11. 11

    C. D. Ball, M. Mengel, F. C. De Lucia, and D. E. Woon, “Quantum scattering calculations for H2S–He between 1–600 K in comparison with pressure broadening, shift, and time resolved double resonance experiments,” J. Chem. Phys. 111, 8893–8903 (1999).

    ADS  Article  Google Scholar 

  12. 12

    A. Kissel, B. Sumpf, H. D. Kronfeldt, B. A. Tichomirov, and Yu. N. Ponomarev, “Noble gas induced line-shift and line-broadening in the ν2 band of H2S,” J. Mol. Struct. 517-518, 477–492 (2000).

    ADS  Article  Google Scholar 

  13. 13

    V. I. Starikov, “Broadening of vibrational-rotational lines of the H2S molecule by pressure of monatomic gases,” Opt. Spectrosc. 115 (1), 20–30 (2013).

    ADS  Article  Google Scholar 

  14. 14

    V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Spectral Lines of Absorption of Molecular Atmospheric Gases (Publishing House of IAO SB RAS, Tomsk: 2006) [in Russian].

    Google Scholar 

  15. 15

    J. Buldyreva, N. N. Lavrent’eva, and V. I. Starikov, Collisional Line Broadening and Shifting of Atmospheric Gases. A Practical Guide for Line Shape Modeling by Current Semi-Classical Approaches (Imperial College Press, 2010).

    Google Scholar 

  16. 16

    D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40, 923–943 (1979).

    Article  Google Scholar 

  17. 17

    R. P. Leavitt, “Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach,” J. Chem. Phys. 73 (11), 5432–5450 (1980).

    ADS  Article  Google Scholar 

  18. 18

    A. A. Ratsdtsig and B. M. Smirnov, Atomic and Molecular Physics Handbook (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Starikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starikov, V.I. Universal Function for the Calculation of Broadening of Absorption Lines of the H2S Molecule by Monoatomic Gases. Atmos Ocean Opt 33, 559–566 (2020). https://doi.org/10.1134/S1024856020060159

Download citation

Keywords:

  • hydrogen sulfide
  • noble gas broadening
  • collisions
  • analytical model