Estimation of the Turbulence Intensity from Lidar Data

Abstract

A way of estimating the intensity of the structure characteristic of fluctuations of the refractive index \(C_{n}^{2}\) based on data from a two-channel turbulent aerosol lidar operating on the backscatter enhancement (BSE) effect is shown. It is proposed to use V.V. Vorob’ev’s approximation which, for the case of homogeneous turbulence, determines the dependence of \(C_{n}^{2}\) on the ratio of echo signals. This technique is based on experimental data which suggest that the BSE effect appears in a relatively small region of the space near the scattering volume. Results of sounding for a horizontal path are presented.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, “Regularities in enhancement of wave backscattering,” Byull. Izobret. No. 21 (1989).

  2. 2

    A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “The hybrid method of calculating field pluctuations in a medium having large and small random inhomogeneities,” Radiophys. Quantum Electron. 16 (7), 811–817 (1973).

    ADS  Article  Google Scholar 

  3. 3

    A. C. Gurvich and S. S. Kashkarov, “Problem of enhancement of scattering in a turbulent medium,” Radiophys. Quantum Electron. 20 (5), 547–549 (1977).

    ADS  Article  Google Scholar 

  4. 4

    A. P. Ivanov, G. Ya. Patrushev, and A. P. Rostov, “Experimental investigation fluctuations of spherical wave at reflected from a mirror in a turbulent atmospheres,” Atmos. Ocean. Optics. 2 (9), 774–778 (1989).

    Google Scholar 

  5. 5

    I. A. Razenkov, “Turbulent lidar: I—Desing,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

    Article  Google Scholar 

  6. 6

    I. A. Razenkov, “Turbulent lidar: II—Experiment, ” Atmos. Ocean. Opt. 31 (3), 281–289 (2018).

    Article  Google Scholar 

  7. 7

    V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: I—Equations," Atmos. Oceanic Opt. 30 (2), 156–161 (2017).

    Article  Google Scholar 

  8. 8

    V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II—Results of numerical simulation,” Atmos. Oceanic Opt. 30 (2), 162–168 (2017).

    Article  Google Scholar 

  9. 9

    V. A. Banakh and V. L. Mironov, Location Propagation of Laser Radiation through a Turbulent Atmosphere (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  10. 10

    V. A. Banakh, “Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere,” Atmos. Oceanic Opt. 26 (2), 90–95 (2013).

    Article  Google Scholar 

  11. 11

    V. V. Vorob’ev and A. G. Vinogradov, “Effect of background turbulence in lidar investigations of clear air turbulence,” Atmos. Oceanic Opt. 27 (2), 134–141 (2014).

    Article  Google Scholar 

  12. 12

    Gurvich A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv. A-tmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  13. 13

    A. S. Gurvich, “Lidar positioning of higher clear-air turbulence regions,” Izv. Atmos. Ocean. Phys. 50 (2), 143–151 (2014).

    Article  Google Scholar 

  14. 14

    I. A. Razenkov, V. A. Banakh, and E. V. Gorgeev, “Lida-r “BSE-4" for the atmospheric turbulence measurements,” Proc. SPIE—Int. Soc. Opt. Eng. (2018). https://doi.org/10.1117/12.2505183

  15. 15

    I. A. Razenkov, “Optimization of parameters of a turbulent lidar,” Atmos. Ocean. Opt. 32 (3), 349–360 (2019).

    Article  Google Scholar 

  16. 16

    V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016)

    ADS  Article  Google Scholar 

  17. 17

    J. Lumley and H. Panofsky, The Structure of Atmospheric Turbulence (John Wiley & Sons, 1964).

    Google Scholar 

  18. 18

    T. R. Oke, Climates of Boundary Layer (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  19. 19

    V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).

    Article  Google Scholar 

  20. 20

    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters,” Atmos. Ocean. Opt. 31 (6), 553–563 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.I. Nadeev for useful discussion and constructive remarks.

Funding

This work was supported by the Russian Academy of Sciences, fundamental research project no. AAAA-A17-117021310149-4.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Razenkov.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razenkov, I.A. Estimation of the Turbulence Intensity from Lidar Data. Atmos Ocean Opt 33, 245–253 (2020). https://doi.org/10.1134/S1024856020030094

Download citation

Keywords:

  • atmospheric turbulence
  • backscatter enhancement effect
  • lidar