Multiyear Trends in the Mass Concentration of Near-Surface Aerosol at Zvenigorod Research Station, A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences


Estimates of seasonally dependent multiyear trends in the mass concentration of near-surface aerosol are presented based on measurements at the Zvenigorod Research Station of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, in 1991–2018. The analysis was performed by the method of multiple linear regression taking into account data autocorrelation on long timescales. Statistically significant negative trends were derived for the spring and summer periods of 1991–2002 and 2013–2018, respectively; possible causes for the trends are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    J. Yoon, W. von Hoyningen-Huene, M. Vountas, and J. P. Burrows, “analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China,” Atmos. Chem. Phys. 11, 12 149–12 167 (2011).

    Article  Google Scholar 

  2. 2

    A. de Meij, A. Pozzer, and J. Lelieveld, “Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009,” Atmos. Environ. 51, 75–85 (2012).

    ADS  Article  Google Scholar 

  3. 3

    B. Zhao, J. H. Jiang, Y. Gu, D. Diner, J. Worden, K.‑N. Liou, H. Su, J. Xing, M. Garay, and L. Huang, “Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes,” Environ. Res. Lett. 12 (5), 054021 (2017).

    ADS  Article  Google Scholar 

  4. 4

    I. Barmpadimos, C. Hueglin, J. Keller, S. Henne, and A. S. H. Prevot, “Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008,” Atmos. Chem. Phys. 11, 1813–1835 (2011).

    ADS  Article  Google Scholar 

  5. 5

    I. Barmpadimos, J. Keller, D. Oderbolz, C. Hueglin, and A. S. H. Prevot, “One decade of parallel fine (PM2.5) and coarse (PM10-PM2.5) particulate matter measurements in Europe: Trends and variability,” Atmo-s. Chem. Phys. 12, 3189–3203 (2012).

    ADS  Article  Google Scholar 

  6. 6

    M. Cusack, A. Alastuey, A. Perez, J. Pey, and X. Querol, “Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002–2010),” Atmos. Chem. Phys. 12, 8341–8357 (2012).

    ADS  Article  Google Scholar 

  7. 7

    J. C. Cerro, V. Cerd, and J. Pey, “Trends of air pollution in the Western Mediterranean basin from a 13-year database: A research considering regional, suburban and urban environments in Mallorca (Balearic Islands),” Atmos. Environ. 103, 138–146 (2015).

    ADS  Article  Google Scholar 

  8. 8

    A. Bigi and G. Ghermandi, “Long-term trend and variability of atmospheric PM10 concentration in the Po Valley,” Atmos. Chem. Phys. 14, 4895–4907 (2014).

    ADS  Article  Google Scholar 

  9. 9

    A. Bigi and G. Ghermandi, “Trends and variability of atmospheric PM2.5 and PM10 concentration in the Po Valley, Italy,” Atmos. Chem. Phys. 16, 15777–15788 (2016).

    ADS  Article  Google Scholar 

  10. 10

    K. C. Wang, R. E. Dickinson, L. Su, and K. E. Trenberth, “Contrasting trends of mass and optical properties of aerosols over the Northern hemisphere from 1992 to 2011,” Atmos. Chem. Phys. 12, 9387–9398 (2012).

    ADS  Article  Google Scholar 

  11. 11

    C. Q. Lin, G. Liu, A. K. H. Lau, Y. Li, C. C. Li, J. C. H. Fung, and X. Q. Lao, “High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015,” Atmos. Environ. 180, 110–116 (2018).

    ADS  Article  Google Scholar 

  12. 12

    E. Ahmed, K.-H. Kim, Z.-H. Shon, and S.-K. Song, “Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013,” Atmos. Environ. 101, 125–133 (2015).

    ADS  Article  Google Scholar 

  13. 13

    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Time content variations of submicron aerosol and soot in the near-ground layer of the West Siberia atmosphere,” Atmos. Ocean. Opt. 20 (12), 987–990 (2007).

    Google Scholar 

  14. 14

    E. P. Yausheva, V. S. Kozlov, M. V. Panchenko, and V. P. Shmargunov, “Long-term variability of aerosol and black carbon concentrations in the atmospheric surface layer as results of 20-year measurements at the IAO aerosol station,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 1046631 (2017).

  15. 15

    V. N. Sidorov, “Seasonal and diurnal variations in the dry fraction of submicron aerosol in the near-surface layer,” in Proc. of the Conference “Physics of Atmospheric Aerosol” (Dialog MGU, Moscow, 1999), p. 356–367 [in Russian].

  16. 16

    A. A. Isakov, S. L. Begunov, S. A. Golovyatinskii, and A. V. Tikhonov, “Spectropolarimetric studies of atmospheric aerosols,” Atmos. Ocean. Opt. 12 (6), 537–542 (1999).

    Google Scholar 

  17. 17

    A. A. Isakov, A. N. Gruzdev, and A. V. Tikhonov, “Long-period variations of optical and microphysical parameters of the near-surface aerosol,” Atmos. Ocean. Opt. 18 (5-6), 350–356 (2005).

    Google Scholar 

  18. 18

    A. A. Isakov and A. N. Gruzdev, “Long-period variations in the optical and microphysical parameters of surface aerosol in a Moscow suburb,” Izv. Atmos. Ocean. Phys. 45 (2), 233–241 (2009).

    Article  Google Scholar 

  19. 19

    A. N. Gruzdev and A. A. Isakov, “On the nature of long-period variations in mass concentration of near-ground aerosol // Atmos. Ocean. Opt. 29 (1), 73–78 (2016).

    Article  Google Scholar 

  20. 20

    A. N. Gruzdev, “Analysis of the weekly cycle in the atmosphere near Moscow,” Izv. Atmos. Ocean. Phys. 49 (2), 137–147 (2013).

    Article  Google Scholar 

  21. 21

    J. Beran, Statistics for Long Memory Processes (Chapman & Hall, New York, 1994).

    Google Scholar 

  22. 22

    A. N. Gruzdev, “Accounting for autocorrelation in the linear regression problem by an example of analysis of the atmospheric column NO2 content,” Izv. Atmos. Ocean. Phys. 55 (1), 65–72 (2019).

    Article  Google Scholar 

  23. 23

    A. N. Gruzdev, “Accounting for long-term serial correlation in a linear regression problem,” IOP Conf. Ser. Earth Environ. Sci. 231, 1–10 (2019).

  24. 24

    A. N. Gruzdev and V. A. Bezverkhnii, “Quasi-biennial variations in ozone and meteorological parameters over western Europe from ozonesonde data,” Izv. Atmos. Ocean. Phys. 42 (2), 203–214 (2006).

    Article  Google Scholar 

  25. 25

    J. Laothawornkitku, J. E. Taylor, N. D. Paul, and C. N. Hewitt, “Biogenic volatile organic compounds in the Earth system,” New Phytolt. 183, 27–51 (2009).

    Article  Google Scholar 

  26. 26

    K. R. Daellenbach, G. Stefenelli, C. Bozzetti, A. Vlachou, P. Fermo, R. Gonzalez, A. Piazzalunga, C. Colombi, F. Canonaco, C. Hueglin, A. Kasper-Gieb, J.‑L. Jaffrezo, F. Bianchi, J. G. Slowik, U. Baltensperger, I. El Haddad, and A. S. H. Prevot, “Long-term chemical analysis and organic aerosol source apportionment at nine sites in Central Europe: Source identification and uncertainty assessment,” Atmos. Chem. Phys. 17, 13 265–13 282 (2017).

    Article  Google Scholar 

  27. 27

    I. I. Timkovsky, N. F. Elanskii, A. I. Skorokhod, and R. A. Shumskii, “Studying of biogenic volatile organic compounds in the atmosphere over Russia,” Izv. Atmo-s. Ocean. Phys. 46 (3), 319–327 (2010).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. N. Gruzdev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gruzdev, A.N., Isakov, A.A. & Anikin, P.P. Multiyear Trends in the Mass Concentration of Near-Surface Aerosol at Zvenigorod Research Station, A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Atmos Ocean Opt 33, 274–281 (2020).

Download citation


  • aerosol
  • mass concentration
  • linear trend
  • multiple linear regression
  • autocorrelation of data