Collisional Broadening of Vibrational-Rotational CO2 Lines by Buffer Gases

Abstract

Unsaturated absorption coefficients in pure CO2 and binary mixtures of CO2 with buffer gases Mj (He, Ar, Kr, Xe, N2, O2, CO, N2O, 13C16O2) were measured with a tunable CO2 laser at the central frequencies of the R(8), R(22), R(34), P(8), P(22), and P(36) CO2 spectral lines of the 1000–0001 transition at a temperature of 300–700 K. A technique is described and the coefficients of self-broadening and broadening of CO2 spectral lines by a buffer gas Mj are calculated. It is shown that the efficiency of the CO2 interaction with diatomic and triatomic molecules is determined by the electric moment; in the case of inert gases, the mass factor plays the major role. It is ascertained that the temperature dependences of the collisional broadening of CO2 spectral lines can be highly accurately approximated by power functions with two different exponents.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    O. I. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers (Nauka i tekhnika, Minsk, 1985) [in Russian].

  2. 2

    V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Spectral Lines of Molecular Absorption of Atmospheric Gases, Ed. by K.M. Firsov (Publishing House of IAO SB RAS, Tomsk, 2006) [in Russian].

    Google Scholar 

  3. 3

    A. Predoi-Cross, W. Liu, R. Murphy, C. Povey, R. R. Gamache, A. L. Laraia, A. R. W. McKellar, D. R. Hurtmans, and Devi V. Malathy, “Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012–00001 and 30013–00001 bands,” J. Quant. Spectrosc. Radiat. Transfer 111, 1065–1079 (2010).

    ADS  Article  Google Scholar 

  4. 4

    K. I. Arshinov, O. N. Krapivnaya, and V. V. Nevdakh, “Laser diagnostics of equilibrium a CO2 : N2 gas mixture,” Atmos. Ocean. Opt. 27 (4), 381–385 (2014).

    Article  Google Scholar 

  5. 5

    K. I. Arshinov, M. K. Arshinov, and V. V. Nevdakh, “Study of the parameters of the collisionally broadened R22 absorption line of the 1000–0001 transition in CO2 molecules: I. Experiment,” Opt. Spectrosc. 112 (6), 844–849 (2012).

    ADS  Article  Google Scholar 

  6. 6

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRA-N 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  7. 7

    L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400 K temperature range,” Appl. Opt. 27 (18), 3902–3907 (1988).

    ADS  Article  Google Scholar 

  8. 8

    X. Huang, R. R. Gamache, R. S. Freedman, D. W. Schwenke, and T. J. Lee, “Reliable infrared line lists for 13CO2 isotopologues up to E′ = 18,000 cm–1 and 1500 K, with line shape parameters,” J. Quant. Spectrosc. Radiat. Transfer 147, 134–144 (2014).

    ADS  Article  Google Scholar 

  9. 9

    J. Lamouroux, R. R. Gamache, A. L. Laraia, J.‑M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 < 00001 and 30013 < 00001 bands of CO2. III: Self collisions,” J. Quant. Spectrosc. Radiat. Transfer 113, 1536–1546 (2012).

    ADS  Article  Google Scholar 

  10. 10

    S. N. Andreev, V. N. Ochkin, and S. Yu. Savinov, “Influence of temperature on the collision broadening of IR spectral lines of CO2 molecules,” Quantum Electron. 32 (7), 647–653 (2002).

    ADS  Article  Google Scholar 

  11. 11

    C. Young and R. E. Chapman, “Line-width and band strengths for the 9.4- and 10.4-μm CO2 bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679–690 (1974).

    ADS  Article  Google Scholar 

  12. 12

    S. A. Tashkun and V. I. Perevalov, “CDSD-4000: High-resolution, high-temperature Carbon Dioxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).

    ADS  Article  Google Scholar 

  13. 13

    R. R. Gamache, J. Lamouroux, A. K. Laraia, J.‑M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 < 00001 and 30013 < 00001 bands of CO2, I: Collisions with N2,” J. Quant. Spectrosc. Radiat. Transfer 113, 976–990 (2012).

    ADS  Article  Google Scholar 

  14. 14

    R. R. Gamache, J. Lamouroux, A. K. Laraia, J.‑M. Hartmann, and C. Boulet, “Semiclassical calculations of half-widths and line shifts for transitions in the 30012 < 00001 and 30013 < 00001 bands of CO2, II: Collisions with O2 and air,” J. Quant. Spectrosc. Radiat. Transfer 113, 991–1030 (2012).

    ADS  Article  Google Scholar 

  15. 15

    L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Collisional broadening of CO2 IR lines. II. Calculations,” J. Chem. Phys. 88 (5), 2999–3006 (1988).

    ADS  Article  Google Scholar 

  16. 16

    M. O. Bulanin, V. P. Bulychev, and E. B. Khodos, “Estimation of parameters of rovibrational lines in the 9.4- and 10.4-μm CO2 bands under different temperatures,” Opt. Spektr. 48 (4), 732–737 (1980).

    Google Scholar 

  17. 17

    T. W. Meyer, C. K. Rhodes, and H. A. Haus, “High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques,” Phys. Rev. A: 12 (5), 1993–2008 (1975).

    ADS  Article  Google Scholar 

  18. 18

    A. M. Robinson and J. S. Weiss, “Absorption at 10 μm in CO2–He and CO2–N2 mixtures at elevated temperatures,” Can. J. Phys. 60, 1656–1659 (1982).

    ADS  Article  Google Scholar 

  19. 19

    K. I. Arshinov, O. N. Krapivnaya, and V. V. Nevdakh, “Collisional self-broadening coefficients and probabilities of spontaneous emission of the CO2 1000–0001 transition lines // Atmos. Ocean. Opt. 30 (4), 311–315 (2017).

    Article  Google Scholar 

  20. 20

    M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155 (2006).

    ADS  Article  Google Scholar 

  21. 21

    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Introduction into the Rotational-Vibrational Spectroscopy of Polyatomic Molecules (Publishing House of IAO SB RAS, Tomsk, 2004) [in Russian].

    Google Scholar 

  22. 22

    T. M. Petrova, A. M. Solodov, A. P. Shcherbakov, V. M. Deichuli, A. A. Solodov, Yu. N. Ponomarev, and T. Yu. Chesnokova, “Parameters of broadening of water molecule absorption lines by argon derived using different line profile models,” Atmos. Ocean. Opt. 30 (2), 123–128 (2017).

    Article  Google Scholar 

  23. 23

    A. V. Kozodoev, A. I. Privezentsev, A. Z. Fazliev, and N. N. Filippov, “Systematization of sources of data on spectral line parameters for the CO2 molecule and its isotopologues in the W@DIS information system,” Atmos. Ocean. Opt. 31 (2), 201–215 (2018).

    Article  Google Scholar 

  24. 24

    J.-M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, “Recent advances in collisional effects on spectra of molecular gases and their practical consequences,” J. Quant. Spectrosc. Radiat. Transfer 213, 178–227 (2018).

    ADS  Article  Google Scholar 

  25. 25

    V. I. Mudrov and V. L. Kushko, Measurement Processing Techniques (Radio i svyaz’, Moscow, 1983) [in Russian]

  26. 26

    N. S. Leshenyuk and V. V. Pashkevich, “Accuracy characteristics of the diagnostics of active media of CO2 lasers from gain coefficient measurements,” J. Appl. Spectrosc. 46 (4), 354–359 (1987).

    ADS  Article  Google Scholar 

  27. 27

    K. I. Arshinov, O. N. Krapivnaya, V. V. Nevdakh, and V. N. Shut, “Collisional broadening of CO2 1000–0001 transition lines by O2 and N2 in the range 300–700 K,” J. Appl. Spectrosc. 84 (5), 739–743 (2017).

    ADS  Article  Google Scholar 

  28. 28

    P. V. Novitskii and I. A. Zograf, Measurement Accuracy Estimation (Energoatomizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  29. 29

    Sh. Chen and M. Takeo, “Broadening and shift of spectral lines by extraneous gases,” Uspekhi Fiz. Nauk. 66 (3), 391–474 (1958).

    Article  Google Scholar 

  30. 30

    V. V. Nevdakh, L. N. Orlov, and N. S. Leshenyuk, “Temperature dependence of the vibrational relaxation rate constants of CO2 (0001) in binary mixtures,” J. Appl. Spectrosc. 70 (2), 276–284 (2003).

    Article  Google Scholar 

  31. 31

    K. I. Arshinov, O. N. Krapivnaya, V. V. Nevdakh, S. R. Syrtsov, and V. N. Shut, “Collisional broadening of CO2 transition lines 1000–0001 by inert gas atoms at 300–700 K,” Opt. Spectrosc. 125 (1), 5–8 (2018).

    ADS  Article  Google Scholar 

  32. 32

    C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).

    ADS  Article  Google Scholar 

  33. 33

    Ch. Tauns and A. Shavlov, Radio Spectroscopy (Inostrannaya literatura, Moscow, 1959) [in Russian].

  34. 34

    S. Nakamichi, Y. Kawaguchi, H. Fukuda, S. Enami, S. Hashimoto, M. Kawasaki, T. Umekawa, I. Morino, H. Suto, and G. Inoue. “Buffer-gas pressure broadening for the (3001)III-(0000) band of CO2 measured with continuous-wave cavity ring-down spectroscopy,” Phys. Chem. Chem. Phys. 8, 364–368 (2006).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. I. Arshinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arshinov, K.I., Krapivnaya, O.N., Nevdakh, V.V. et al. Collisional Broadening of Vibrational-Rotational CO2 Lines by Buffer Gases. Atmos Ocean Opt 33, 229–237 (2020). https://doi.org/10.1134/S1024856020030033

Download citation

Keywords:

  • unsaturated absorption coefficient
  • relative collisional broadening coefficient
  • buffer gas