Skip to main content
Log in

Manifestation of Equatorial Processes in Water Vapor Variations over Europe

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We studied the variations in time series of the near-surface water vapor partial pressure on the territory of Europe over a multiyear period. It is found that the contribution of fluctuations on time scales from 2 to 5 years is from 35 to 60% of the variance of the interannual variations. The spatial dependences of the local coherence between harmonics on 2–4 scales of Niño3.4 index and the water partial pressure in Europe are determined. We determined that the correlation of these variations reaches 0.7–0.9. It is shown that westward-propagating planetary waves play a significant role in energy transfer from equatorial regions to midlatitudes. This energy begins to increase in the winter of an El Niño year and reaches the maximum a year later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. V. Panchenko, S. A. Terpugova, V. S. Kozlov, V. V. Pol’kin, and E. P. Yausheva, “Annual behavior of the condensation activity of submicron aerosol in the atmospheric surface layer of Western Siberia,” Atmos. Ocean. Opt. 18 (8), 607–611 (2005).

    Google Scholar 

  2. G. A. Schmidt, R. A. Ruedy, R. L. Miller, and A. A. Lacis, “Attribution of the present day total greenhouse effect,” J. Geophys. Res. 115 (D20106), 1–6 (2010).

    Google Scholar 

  3. V. N. Malinin, S. M. Gordeeva, and L. M. Naumov, “Total precipitable water of the atmosphere as a climate forcing factor,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 15 (3), 243–251 (2018).

    Article  Google Scholar 

  4. J. Morland, CoenM. Collaud, and K. Hocke, “Tropospheric water vapor above Switzerland over the last 12 years,” Atmos. Chem. Phys. 9, 5975–5988 (2009).

    Article  ADS  Google Scholar 

  5. Yu. P. Perevedentsev, A. A. Vasil’ev, K. M. Shantalinskii, and V. V. Gur’yanov, “Long-term variations in surface air pressure and surface air temperature in the Northern hemisphere mid-latitudes, Rus. Meteorol. Hydrol. 42 (7), 461–470 (2017).

    Article  Google Scholar 

  6. O. G. Khutorova, V. E. Khutorov, and G. M. Teptin, “Interannual variability of surface and integrated water vapor and atmospheric circulation in Europe,” Atmos. Oceanic Opt. 31 (5), 486–491 (2018).

    Article  Google Scholar 

  7. I. Herceg-Bulic, B. Mezzina, F. Kucharski, P. Ruggieri, and M. P. King, “Wintertime ENSO influence on late spring European climate: The stratospheric response and the role of North Atlantic SST,” J. Climatol. 37 ((S1)), 87–108 (2017).

    Article  Google Scholar 

  8. A. Timmermann, An Soon-Il, Jong-Seong Kug, Fei-Fei Jin, Wenju Cai, A. Capotondi, Kim M. Cobb, M. Lengaigne, M. J. McPhaden, M. F. Stuecker, K. Stein, A. T. Wittenberg, Kyung-Sook Yun, T. Bayr, Han-Ching Chen, Y. Chikamoto, B. Dewitte, D. Dommenget, P. Grothe, E. Guilyardi, Yoo-Geun Ham, M. Hayashi, S. Ineson, Daehyun Kang, Sunyong Kim, WonMoo Kim, June-Yi Lee, Tim Li, Jing-Jia Luo, S. McGregor, Y. Planton, S. Power, H. Rashid, Hong-Li Ren, A. Santoso, K. Takahashi, A. Todd, Guomin Wang, Guojian Wang, Ruihuang Xie, Woo-Hyun Yang, Sang-Wook Yeh, Jinho Yoon, E. Zeller, Xuebin Zhang, “El Niño—Southern Oscillation complexity,” Nature 559, 535–545 (2018).

    Article  ADS  Google Scholar 

  9. http://origin.cpc.ncep.noaa.gov/products/precip/CWlink/ MJO/enso.shtml#history.cpc.ncep.noaa.gov/products/ analysis_monitoring/ensostuff/ONI_v5.php (Cited November 25, 2018).

  10. www.ecad.eu (Cited November 25, 2018).

  11. http://meteo.ru/data/163-basic-parameters (Cited November 25, 2018).

  12. P. Llamedo, R. Hierro, A. de la Torre, and P. Alexander, “ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles,” J. Climatol. 37, 268–275 (2017).

    Article  Google Scholar 

  13. O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).

    Article  Google Scholar 

  14. G. Dzhenkins and D. Vatts, Spectral Analysis and Its Applications. Vol. 1 and 2 (Mir, Moscow, 1971) [in Russian].

  15. G. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79 (1), 61–78 (1998).

    Article  ADS  Google Scholar 

  16. V. A. Bezverkhnii, “Development of the wavelet-transform method for the analysis of geophysical data,” Izv. Akad. Nauk. Fiz. Atmos. Okeana. 37 (5), 630–638 (2001).

    MathSciNet  Google Scholar 

  17. I. I. Mokhov and D. A. Smirnov, “Study of the mutual influence of the El Niño-Southern Oscillation processes and the North Atlantic and Arctic Oscillations,” Izv., Atmos. Ocean. Phys. 42 (5), 598–614 (2006).

    Article  Google Scholar 

  18. S. Jevrejeva, J. C. Moore, and A. Grinsted, “Oceanic and atmospheric transport of multiyear El Nino—Southern Oscillation (ENSO) signatures to the polar regions,” Geophys. Rev. Lett. 31, L24210 (2004).

  19. V. V. Gur’yanov, A. V. Eliseev, I. I. Mokhov, and Yu. P. Perevedentsev, “Wave activity and its changes in the troposphere and stratosphere of the Northern hemisphere in winters of 1979–2016,” Izv., Atmos. Ocean. Phys. 54 (2), 114–126 (2018).

    Article  Google Scholar 

  20. O. G. Khutorova and G. M. Teptin, “Local and planetary scales of wave disturbances for synchronous measurements of atmospheric admixtures,” Dokl. Earth Sci. 400 (1), 89–91 (2005).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-05-00863).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. G. Khutorova, V. E. Khutorov or G. M. Teptin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutorova, O.G., Khutorov, V.E. & Teptin, G.M. Manifestation of Equatorial Processes in Water Vapor Variations over Europe. Atmos Ocean Opt 32, 551–554 (2019). https://doi.org/10.1134/S1024856019050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050087

Keywords:

Navigation