Skip to main content
Log in

Broadening and Shift Coefficients of H2O Absorption Lines in the 8650–9020 cm–1 Spectral Region

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The broadening and shift coefficients of H2O absorption lines are compared for Ar, He, H2, and N2 buffer gases. The broadening and shift coefficients were derived from the analysis of the absorption spectra recorded with an FTIR spectrometer in the spectral region 8650–9020 cm−1 with a spectral resolution of 0.01 cm–1. Using two model line profiles (Voigt and speed-dependent Voigt profiles) the parameters of the H2O absorption lines were calculated. It is shown that the speed-dependent Voigt profile provides better agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Application (Elsevier Science, Amsterdam, Boston, 2008).

    Google Scholar 

  2. D. Lisak, A. Cygan, D. Bermejo, J. L. Domenech, J. T. Hodges, and H. Tran, “Application of the Hartmann–Tran profile to analysis of H2O spectra,” J. Quant. Spectrosc. Radiat. Transfer 164, 221–233 (2015).

    Article  ADS  Google Scholar 

  3. N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).

    Article  ADS  Google Scholar 

  4. J. Tennyson, P. F. Bernath, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H. Ngo, and O. N. Polyansky, “Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report),” Pure Appl. Chem. 86 (12), 1931–1943 (2014).

    Article  Google Scholar 

  5. T. M. Petrova, A. M. Solodov, A. A. Solodov, V. M. Deichuli, and V. I. Starikov, “Measurements and calculations of Ar-broadening parameters of water vapour transitions in a wide spectral region,” Mol. Phys. 115 (14), 1642–1656 (2017).

    Article  ADS  Google Scholar 

  6. N. N. Lavrentieva, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Measurements of N2-broadening and shifting parameters of the water vapor spectral lines in the second hexad region,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2291–2297 (2010).

    Article  ADS  Google Scholar 

  7. T. M. Petrova, A. M. Solodov, V. I. Starikov, and A. A. Solodov, “Measurements and calculations of He-broadening and -shifting parameters of the water vapor transitions of the ν1 + ν2 + ν3 band,” Mol. Phys. 110 (14), 1493–1503 (2012).

    Article  ADS  Google Scholar 

  8. T. M. Petrova, A. M. Solodov, A. A. Solodov, V. M. Deichuli, and V. I. Starikov, “Measurements and calculations of H2-broadening and shift parameters of water vapour transitions of the ν1 + ν2 + ν3 band,” Mol. Phys. 116 (10), 1409–1420 (2018).

    Article  ADS  Google Scholar 

  9. T. M. Kruglova and A. P. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).

    Article  ADS  Google Scholar 

  10. T. M. Petrova, A. M. Solodov, A. P. Shcherbakov, V. M. Deichuli, A. A. Solodov, Yu. N. Ponomarev, and T. Yu. Chesnokova, “Parameters of broadening of water molecule absorption lines by argon derived using different line profile models,” Atmos. Ocean. Opt. 30 (2), 123–128 (2017).

    Article  Google Scholar 

  11. C. D. Boone, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007).

    Article  ADS  Google Scholar 

  12. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, Benner D. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITR-AN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (grant no. 18-45-700011r_a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. M. Petrova or A. A. Solodov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deichuli, V.M., Petrova, T.M., Ponomarev, Y.N. et al. Broadening and Shift Coefficients of H2O Absorption Lines in the 8650–9020 cm–1 Spectral Region. Atmos Ocean Opt 32, 499–505 (2019). https://doi.org/10.1134/S1024856019050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050063

Keywords:

Navigation