Skip to main content
Log in

The Role of Air Humidity in Variations in Near-Surface Ozone Concentration

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Measurements at the Tropospheric Ozone Research (TOR) station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, in 1994–2017 are used to study the dependence of variations in ozone concentration in the near-surface air layer on the absolute humidity. We found a neutral dependence at positive temperatures and surprisingly strong and sign-alternating variability at negative temperatures. The absolute air humidity negatively affects the ozone formation in the near-surface air layer, leading to decreased ozone concentration at temperatures of 0 to −30°C. At very low (below −30°C) temperatures the effect becomes positive, i.e., the ozone concentration increases with the absolute humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (MSU, Moscow, 1998) [in Russian].

    Google Scholar 

  2. B. D. Belan, Tropospheric Ozone (Publishing House of AIO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  3. P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams, “Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer,” Atmos. Chem. Phys. 15 (15), 8889–8973 (2015).

    Article  ADS  Google Scholar 

  4. R. Yadav, L. K. Sahu, G. Beig, and S. N. A. Jaaffrey, “Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India,” Atmos. Res. 176–177, 96–107 (2016).

    Article  Google Scholar 

  5. S. S. Gunthe, G. Beig, and L. K. Sahu, “Study of relationship between daily maxima in ozone and temperature in an urban site in India,” Curr. Sci. 110 (10), 1994–1999 (2016).

    Article  Google Scholar 

  6. S. Munir, T. M. Habeebullah, K. Ropkins, and A. R. Seroji, “Modelling ozone-temperature slope under atypically high temperature in arid climatic conditions of Makkah, Saudi Arabia,” Aerosol Air Quality Res 15 (4), 1281–1290 (2015).

    Article  Google Scholar 

  7. D. Jasaitis, V. Vasiliauskien, R. Chadysien, and M. Peciuliene, “Surface ozone concentration and its relationship with UV radiation, meteorological parameters and radon on the eastern coast of the Baltic Sea,” Atmos. 7 (27) (2016).

    Article  ADS  Google Scholar 

  8. P. Pavon-Dominguez, F. J. Jimenez-Hornero, and E. Gutierrez De Rave, “Proposal for estimating ground-level ozone concentrations at urban areas based on multivariate statistical methods,” Atmos. Environ. 90, 59–70 (2014).

    Article  ADS  Google Scholar 

  9. Y. Y. Toh, S. F. Lim, and R. von Glasow, “The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia,” Atmos. Environ. 70, 435–446 (2013).

    Article  ADS  Google Scholar 

  10. N. V. Tereb, L. I. Milekhin, V. L. Milekhin, V. D. Gnilomedov, D. R. Nechaev, L. K. Kulizhnikova, and V. V. Shirotov, “Surface ozone values in anomalous summer 2010 measured in Obninsk,” Rus. Meteorol. Hydrol. 38 (5), 304–312 (2013).

    Article  Google Scholar 

  11. A. B. Tawfik and A. L. Steiner, “A proposed physical mechanism for ozone-meteorology correlations using land-atmosphere coupling regimes,” Atmos. Environ. 72, 50–59 (2013).

    Article  ADS  Google Scholar 

  12. P. J. Crutzen and P. H. Zimmermann, “The changing photochemistry of the troposphere,” Tellus 43 (4), 136–151.

    Article  ADS  Google Scholar 

  13. H. Levy II, “Normal atmosphere: Large radical and formaldehyde concentrations predicted,” Science 173 (3992), 141–143 (1971).

    Article  ADS  Google Scholar 

  14. D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlyostin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Oceanic Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  15. B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Generation of ozone in the surface air layer versus air temperature,” Atmos. Ocean. Opt. 31 (2), 187–196 (2018).

    Article  Google Scholar 

Download references

Funding

Air composition is monitored within the State Assignment of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences; the study was supported by the Russian Foundation for Basic Research (grant no. 17-05-00374).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. D. Belan or D. E. Savkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belan, B.D., Savkin, D.E. The Role of Air Humidity in Variations in Near-Surface Ozone Concentration. Atmos Ocean Opt 32, 586–589 (2019). https://doi.org/10.1134/S1024856019050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050038

Keywords:

Navigation