Skip to main content
Log in

Changes in the Multilayer Dielectric Coating Reflection Coefficient under Variation in the Medium Humidity

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

It is found that the reflection coefficient of multilayer dielectric mirrors strongly depends on the medium (gas) humidity. This effect can result in both an increase and decrease in the reflection coefficient, which is determined by a change in the refractive indices of the dielectric layers (when filling with water vapor). The mirror reflection coefficient can increase up to 0.9% in a gas with the humidity close to the dew point. Changes in the reflection coefficient of a mirror in gaseous media which contain different water vapor isotopes (H216O, H218O, and D2O) are studied. Mirrors of a CRDS spectrometer with the reflection coefficient R = 0.9999 are studied and the upper bound of the variation in the reflection coefficient versus air humidity is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Godlevskii, Doctoral Dissertation in Mathematics and Physics (Tomsk State Univ., Tomsk, 1981).

    Google Scholar 

  2. D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).

    Article  ADS  Google Scholar 

  3. M. Yu. Tretyakov, A. F. Krupnov, M. A. Koshelev, D. S. Makarov, E. A. Serov, and V. V. Parshin, “Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range,” Rev. Sci. Instrum. 80, 093106 (2009).

    Article  ADS  Google Scholar 

  4. M. A. Koshelev, E. A. Serov, V. V. Parshin, and M. Yu. Tretyakov, “Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2704–2712 (2011).

    Article  ADS  Google Scholar 

  5. D. Mondelain, S. Manigand, S. Kassi, and A. Campargue, “Temperature dependence of the water vapor selfcontinuum by cavity ring-down spectroscopy in the 1.6 μm transparency window,” J. Geophys. Res.: Atmos. 119, 5625–5639 (2014).

    ADS  Google Scholar 

  6. V. I. Serdyukov, L. N. Sinitsa, and A. A. Lugovskoi, “Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors,” Appl. Opt. 55 (17), 4763 (2016).

    Article  ADS  Google Scholar 

  7. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).

    Article  ADS  Google Scholar 

  8. Auwera J. Vander, N. H. Ngo, H. El Hamzaoui, B. Capoen, M. Bouazaoui, P. Ausset, C. Boulet, and J.-M. Hartmann, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev., A 88, 042506 (2013).

    Article  ADS  Google Scholar 

  9. H. J. Bernstein and G. Herzberg, “Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of fluoroform (CHF3) from 2.4 μ to 0.7 μ,” J. Chem. Phys. 16, 30–39 (1948).

    Article  ADS  Google Scholar 

  10. V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells,” Atmos. Ocean. Opt. 26, 329–336 (2013).

    Article  Google Scholar 

  11. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R.Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  12. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour selfcontinuum and water dimers: 1. Analysis of recent work,” Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  13. I. V. Ptashnik, T. M. Petrova, Y. N. Ponomarev, A. A. Solodov, A. M. Solodov, and K. P. Shine, “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    Article  ADS  Google Scholar 

  14. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids. Principles, Methodology and Applications (Academic Press, London, 1999).

    Google Scholar 

  15. L. N. Sinitsa and A. A. Lugovskoy, “Dynamic registration of the absorption spectrum of water in the SiO2 nanopores in high frequency range,” J. Chem. Phys. 133, 204506 (1–5) (2010).

    Google Scholar 

  16. I. Kishenbaum, Heavy Water: Physical Properties and Methods for the Analysis (Moscow, 1953) [in Russian].

    Google Scholar 

  17. A. I. Shatenshtein, Isotope Analysis of Water (Publishing House of Akademy of Sciences of USSR, Moscow, 1957) [in Russian].

    Google Scholar 

  18. W. Demtroder, Laser Spectroscopy: Experimental Techniques (Springer, Heildelberg, Berlin, 2008), 4th ed.

    Google Scholar 

  19. L. N. Sinitsa, V. I. Serdyukov, A. F. Danilyuk, and A.A. Lugovskoi, “Observation of water dimers in nanopores of silicon aerogel,” J. Exp. Theor. Phys. Lett. 102, 32–35 (2015).

    Article  Google Scholar 

  20. H. Nara, H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata, and C. W. Rella, “Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy,” Atmos. Meas. Tech. 5, 2689–2701 (2012).

    Article  Google Scholar 

  21. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the300–2400-K temperature range,” Appl. Opt. 27 (18), 3902–3907 (1988).

    Article  ADS  Google Scholar 

  22. L. Rosenmann, M. Y. Perrin, J. M. Hartmann, and J. Taine, “Diode-laser measurements and calculations of CO2-line-broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” J. Quant. Spectrosc. Radiat. Transfer 40 (5), 569–516 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Sinitsa.

Additional information

Original Russian Text © L.N. Sinitsa, A.A. Lugovskoi, V.I. Serdyukov, M.Yu. Arshinov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinitsa, L.N., Lugovskoi, A.A., Serdyukov, V.I. et al. Changes in the Multilayer Dielectric Coating Reflection Coefficient under Variation in the Medium Humidity. Atmos Ocean Opt 31, 574–581 (2018). https://doi.org/10.1134/S1024856019010160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019010160

Keywords

Navigation