Skip to main content
Log in

Remote Sensing of Lower Tropospheric Aerosols and Clouds over Islamabad Region Using a Self-Engineered Mie Scattering Lidar

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Atmospheric changes in the lower troposphere have been remotely studied using a self-engineered Mie scattering lidar with special emphasis on aerosols and clouds profiling over Islamabad region in Pakistan. The lidar is based on a Nd:YAG laser operating at 1064 nm, with maximal energy of 350 mJ at 20-Hz repetition rate and 5-ns pulse length. A silicon avalanche photodiode (Si-APD, C30950E) module is used as a detector. A higher resolution of the lidar revealed time evolution of thermal transport phenomena in the convective boundary layer. Regions of incessant wind speed, temperature, and particulates concentration have been detected through band-like structures at altitudes above 900 m. Strong backscattering (β) and extinction (α) due to a partially invisible thin cloud layer falling in the field-of-view of the lidar beyond 4 km have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in climate system,” Nature 419, 215–219 (2002).

    Article  ADS  Google Scholar 

  2. A. J. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski Kazuhikoto, and G. D. Thurston, “Lung cancer, cardiopulmonary and long term exposure to fine particulates air pollution,” J. Am. Med. Assoc. 287 (9), 1132–1141 (2002). doi 287.9.1132

    Article  Google Scholar 

  3. A. I. Grishin and A. V. Kryuchkov, “Lidar observations of atmospheric optical characteristics during Sichuan earthquake,” Atmos. Ocean. Opt. 3 (31), 269–272 (2018).

    Article  Google Scholar 

  4. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosols height distribution by lidar,” J. Appl. Meteorol. 11, 483–484 (1972).

    Article  Google Scholar 

  5. J. D. Klett, “Lidar inversion with variable backscatter and extinction ratios,” Appl. Opt. 24 (11), 1638–1639 (1985).

    Article  ADS  Google Scholar 

  6. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20 (2), 211–212 (1981).

    Article  ADS  Google Scholar 

  7. K. Sassen and R. L. Petrilla, “Lidar depolarization from multiple scattering in marine stratus clouds,” Appl. Opt. 25 (9), 1450–1459 (1986).

    Article  ADS  Google Scholar 

  8. S. A. Young, “Analysis of lidar back scatter profiles in optically thin clouds,” Appl. Opt. 34 (30), 7019–7022 (1995).

    Article  ADS  Google Scholar 

  9. V.A. Kovalev and W.E. Eichinger, Elastic Lidar: Theory, Practice and Analysis methods (Wiley, Hoboken NJ, 2004).

    Book  Google Scholar 

  10. C. Weitkamp, Lidar Range Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

    Google Scholar 

  11. Ruangrungrote, “Modelling of aerosol parameters retrieval algorithm based on Mie scattering lidar,” APRA KMITL. Sci. Tech. J. 1 (10) (2010).

    Google Scholar 

  12. H. Li, Y. Yang, X. Hu, Z. Huang, G. Wang, and B. T. Zhang, “Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data,” J. Geophys. Res. 122 (8), 4578–4593 (2017).

    Google Scholar 

  13. M. Mao, W. Jiang, J. Gu, C. Xie, and J. Zhou, “Study on mixed layer, entrainment zone and cloud feedback based on lidar exploration of Nanjing city,” J. Geophys. Res. Lett. 36, L04808 (2009).

    Google Scholar 

  14. G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, I. E. Penner, S. V. Samoilova, S. A. Terpugova, V. A. Banakh, I. N. Smalikho, A. V. Falits, T. M. Rasskazchikova, P. N. Antokhin, M. Yu. Arshinov, B.D. Belan, and S. B. Belan, “Structure of aerosol fields of atmospheric boundary layer according to aerosol and Doppler lidar data during passage of atmospheric fronts,” Atmos. Ocean. Opt. 1 (36), 18–32 (2017).

    Article  Google Scholar 

  15. F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23 (5), 652–653 (1984).

    Article  ADS  Google Scholar 

  16. M. Posyniak, T. Stacewicz, M. Miernecki, A. K. Jagodnicka, and S. P. Malinowski, “Multiwavelength micro pulse lidar for atmosphere aerosol investigation,” Optica Applicata 40 (3), 623–632 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Raza.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, G., Ashraf, M.A., Qureshi, S.H. et al. Remote Sensing of Lower Tropospheric Aerosols and Clouds over Islamabad Region Using a Self-Engineered Mie Scattering Lidar. Atmos Ocean Opt 31, 650–655 (2018). https://doi.org/10.1134/S1024856018060222

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018060222

Navigation