Skip to main content
Log in

Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Trends of total CO and CH4 contents are estimated from satellite AIRS spectrometer data for the Eurasian domain (0–180° E, 0–85° N) for different time periods and seasons. The results are compared with similar estimates, obtained from ground-based spectroscopic measurements at seven stations of the European Network for the Detection of Atmospheric Composition Change (NDACC) and at measurement sites of the Institute of Atmospheric Physics, Russian Academy of Sciences (Zvenigorod Scientific Station (ZSS), Zotto, and Beijing) and St. Petersburg University (Peterhof), located in the study domain. Overall, the total CO decreased over northern Eurasia during the period of 2003–2015 at a rate of 0.05–1.5%/yr, depending on the region; while the total CH4 increased at a rate of 0.16–0.65%/yr. Since 2007, the total CO has been increased during summer and autumn months in most mid- and high-latitude Eurasian background regions, and the total CH4 growth has been accelerated. Changes in the global photochemical system, proceeding against the background of global climate change and, in particular, changes in the “sources/sinks” ratio for minor atmospheric admixtures are suggested as possible causes of this dynamic of trends of the atmospheric CO and CH4 contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate Change 2013: The Physical Science Basis, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (IPCC, Cambridge; New York, 2013).

  2. M. Pommier, C. A. McLinden, and M. Deeter, “Relative changes in CO emissions over megacities based on observations from space,” Geophys. Rev. Lett. 40, 1–6 (2013).

    Article  Google Scholar 

  3. E. Dlugokencky, A. Crotwell, K. Masarie, J. White, P. Lang, and M. Crotwell, “NOAA measurements of long lived greenhouse gases,” Asia-Pacific GAW Greenhouse Gases. Newslett. 4, 6–9 (2013).

    Google Scholar 

  4. WMO/IGAC Impacts of Megacities on Air Pollution and Climate. Rep. No. 205 (WMO, Geneva, 2012).

  5. P. C. Novelli, K. A. Masarie, and P. M. Lang, “Distributions and recent changes in carbon monoxide in the lower troposphere,” J. Geophys. Res. 103 (19), 015–033 (1998).

    Google Scholar 

  6. A. M. Thompson and R. J. Cicerone, “Possible perturbations to atmospheric CO, CH4, and OH,” J. Geophys. Res., D 91 (10), 10853–10864 (1986).

    Article  ADS  Google Scholar 

  7. D. Wunch, P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, “Emissions of greenhouse gases from a north american megacity,” Geophys. Rev. Lett. 36 (2009).

    Google Scholar 

  8. G. S. Golitsyn, E. I. Grechko, G. Ch. Wang, P. S. Wang, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv. Atmos. Ocean. Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  9. M. A. K. Khalil, J. P. Pinto, and M. J. Shearer, “Preface atmospheric carbon monoxide,” Chemosphere: Global Change Sci. 1 (1–3), 1–375 (1999).

    Google Scholar 

  10. G. Bras’e and S. Solomon, Aeronomy of the Middle Atmosphere (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  11. L. N. Yurganov, P. Duchatelet, A. V. Dzhola, D. P. Edwards, F. Hase, I. Kramer, E. Mahieu, J. Mellqvist, J. Notholt, P. C. Novelli, A. Rockmann, H. E. Scheel, M. Schneider, A. Schulz, A. Strandberg, R. Sussmann, H. Tanimoto, V. Velazco, J. R. Drummond, and J. C. Gille, “Increased Northern hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space,” Atmos. Chem. Phys. 5 (2), 563–573 (2005).

    Article  ADS  Google Scholar 

  12. P. Hausmann, R. Sussmann, and D. Smale, “Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): Top-down estimate from ethane and methane column observations,” Atmos. Chem. Phys. 16, 3227–3244 (2016).

    Article  ADS  Google Scholar 

  13. P. Bousquet, B. Ringeval, I. E. J. Pison, E.-G. Brunke, C. Carouge, F. Chevallier, A. Fortems-Cheiney, C. Frankenberg, D. A. Hauglustaine, P. B. Krummel, R. L. Langenfelds, M. Ramonet, M. Schmidt, L. P. Steele, S. Szopa, C. Yver, N. Viovy, and P. Ciais, “Source attribution of the changes in atmospheric methane for 2006–2008,” Atmos. Chem. Phys. 11, 3689–3700 (2011).

    Article  ADS  Google Scholar 

  14. S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron- Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quere, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, and G. Zeng, “Three decades of global methane sources and sinks,” Nat. Geosci. 6, 813–823 (2013).

    Article  ADS  Google Scholar 

  15. L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satellite- and groundbased CO total column observations over over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 11, 7925–7942 (2011). doi 10.5194/acp-11-7925-2011

    Article  ADS  Google Scholar 

  16. V. S. Rakitin, E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, “Variations of the total content of carbon monoxide over Moscow megapolis,” Izv. Atmos. Ocean. Phys. 47 (1), 59–66 (2011).

    Article  Google Scholar 

  17. P. Wang, N. F. Elansky, Yu. M. Timofeev, Gengchen Wang, G. S. Golitsyn, M. V. Makarova, V. S. Rakitin, Yu. A. Stabkin, A. I. Skorokhod, E. I. Grechko, E. V. Fokeeva, and A. N. Safronov, “A study of the long-term trends of CO total column for urban and background regions using ground-based and satellite spectroscopic measurements,” Adv. Atmos. Sci. (2017) (in press).

    Google Scholar 

  18. G. R. Van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  ADS  Google Scholar 

  19. A. V. Vasileva and K. B. Moiseenko, “Methane emissions from 2000 to 2011 wildfires in Northeast Eurasia estimated with MODIS burned area data,” Atmos. Environ. 71, 115–121 (2013).

    Article  ADS  Google Scholar 

  20. V. I. Dianov-Klokov, L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Spectroscopic measurements of atmospheric carbon monoxide and methane. 1. Latitudinal distribution,” J. Atmos. Chem. 8 (2), 139–151 (1989).

    Article  Google Scholar 

  21. M. V. Makarova, A. V. Poberovskii, and S. I. Osipov, “Time variations of the total CO content in the atmosphere near St. Petersburg,” Izv. Atmos. Ocean. Phys. 47 (6), 739–746 (2011).

    Article  Google Scholar 

  22. N. M. Gavrilov, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeyev, “Comparisons of CH4 groundbased FTIR measurements near Saint-Petersburg with GOSAT observations,” Atmos. Meas. Technol. 7, 1003–1010 (2014).

    Article  Google Scholar 

  23. E. Sepulveda, M. Schneider, F. Hase, S. Barthlott, D. Dubravica, O. E. Garcia, A. Gomez-Pelaez, Y. Gonzalez, J. C. Guerra, M. Gisi, R. Kohlhepp, S. Dohe, T. Blumenstock, K. Strong, D. Weaver, M. Palm, A. Sadeghi, N. M. Deutscher, T. Warneke, J.Notholt, N. Jones, D. W. T. Griffith, D. Smale, G. W. Brailsford, J. Robinson, F. Meinhardt, M. Steinbacher, T. Aalto, and D. Worth, “Tropospheric CH4 signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements,” Atmos. Meas. Technol. 7, 2337–2360 (2014).

    Article  Google Scholar 

  24. F. V. Kashin, N. E. Kamenogradskii, E. I. Grechko, A. V. Dzhola, A. V. Poberovskii, and M. A. Makarova, “Comparisons of different methods of ground-based spectroscopic measurements of the total methane content in the atmosphere,” Izv. Atmos. Ocean. Phys. 37 (3), 314–319 (2001).

    Google Scholar 

  25. H. H. Aumann, M. T. Chahine, C. Gautier, M. Goldberg, E. Kalnay, L. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. Staelin, L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products and processing systems,” IEEE Trans. Geosci. Remote Sens. 41 (2), 253–264 (2003).

    Article  ADS  Google Scholar 

  26. W. W. McMillan, K. D. Evans, C. D. Barnet, E. S. Maddy, G. W. Sachse, and G. S. Diskin, “AIRS V5 CO retrieval with DACOM in situ measurements,” IEEE Trans. Geosci. Remote Sens. 49, 1–12 (2011).

    Article  Google Scholar 

  27. AIRS/AMSU/HSB Version 6 Level 2, Product User Guide. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_L2_Product_User_ Guide.pdf.

  28. V. S. Rakitin, Yu. A. Shtabkin, N. F. Elanskii, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents,” Atmos. Ocean. Opt. 28 (6), 816–824 (2015).

    Article  Google Scholar 

  29. R. L. Thompson, A. Stohl, Myhre C. Lund, M. Sasakawa, T. Machida, T. Aalto, E. Dlugokencky, D. Worthy, and A. Skorokhod, “Methane fluxes in the high northern latitudes estimated using a Bayesian atmospheric inversion,” Geophys. Res. Abstr. 18 (2016). doi 10.5194/acp-17-3553-2017

    Google Scholar 

  30. http://ds.data.jma.go.jp/gmd/wdcgg/

  31. Z. Jiang, J. R. Worden, H. Worden, M. Deeter, D.B.A. Jones, A. F. Arellano, and D. K. Henze, “A fifteen year record of CO emissions constrained by MOPITT CO observations,” Atmos. Chem. Phys. Discuss. (2016). doi 10.5194/acp-2016-811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Rakitin or N. F. Elansky.

Additional information

Original Russian Text © V.S. Rakitin, N.F. Elansky, N.V. Pankratova, A.I. Skorokhod, A.V. Dzhola, Yu.A. Shtabkin, P. Wang, G. Wang, A.V. Vasilieva, M.V. Makarova, E.I. Grechko, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakitin, V.S., Elansky, N.F., Pankratova, N.V. et al. Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements. Atmos Ocean Opt 30, 517–526 (2017). https://doi.org/10.1134/S1024856017060112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017060112

Keywords

Navigation