Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 198–202 | Cite as

A control algorithm for an adaptive optics system based on the focal spot radius minimization

  • D. A. Yagnyatinskiy
  • D. M. Lyakhov
  • A. N. Borshevnikov
  • V. N. Fedoseyev
Adaptive and Integral Optics


A control algorithm for adaptive optics systems using the focal spot of a light beam is suggested. The algorithm is based on the analytical relationship between the spot radius and a change in shape of the deformable mirror surface. A numerical simulation has been carried out, which verifies this relationship and its applicability to the wavefront correction. Some experimental results confirm the algorithm applicability for practical use.


control algorithm adaptive optics system focal spot numerical simulation wavefront second-order aberrations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Vorontsov and V. I. Shmal’gauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    R. K. Tyson, Principles of Adaptive Optics (CRC Press, London; New York, 2011), 3rd ed.Google Scholar
  3. 3.
    T. I. Kuznetsova, “On the phase retrieval problem in optics,” Sov. Phys. Uspekhi 31(4), 364–371 (1988).CrossRefADSGoogle Scholar
  4. 4.
    M. A. Vorontsov, A. V. Koryabin, and V. I. Shmal’-gauzen, Controllable Optical Systems (Nauka, Moscow, 1988) [in Russian].Google Scholar
  5. 5.
    A. A. Aleksandrov, A. V. Kudryashov, A. L. Rukosuev, T. Yu. Cherezova, and Yu. V. Sheldakova, “An adaptive optical system for controlling laser radiation,” J. Opt. Technol. 74 (8), 550–554 (2007).CrossRefGoogle Scholar
  6. 6.
    O. Lundh, “Control of laser focusing using a deformable mirror and a genetic algorithm,” in Lund Reports on Atomic Physics (Lund Institute of Technology, Lund, 2003), Vol. 82.Google Scholar
  7. 7.
    I. V. Malafeeva and S. S. Chesnokov, “Simplex search for optimal phase when adaptive focusing optical beams in a turbulent nonlinear medium,” in Abstr. of the VII Intern. Conf. “Optics of Lasers”, St. Peterburg, June 21–25, 1993, p. 414.Google Scholar
  8. 8.
    I. V. Malafeeva, I. E. Telpukhovskii, and S. S. Chesnokov, “Dynamic correction of nonstationary windinduced refraction based on the simplex method,” Atmos. Ocean. Opt. 5 (4), 265–267 (1992).Google Scholar
  9. 9.
    J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37 (21), 4663–4668 (1998).CrossRefADSGoogle Scholar
  10. 10.
    Ya. I. Malashko and V. M. Khabibullin, “Criteria for admissible values of smooth aberrations for nondiffractive laser beams,” Quantum Electron. 44 (4), 376–382 (2014).CrossRefADSGoogle Scholar
  11. 11.
    I. P. Lukin, “Spatial scales of coherence of diffractionfree beams in a turbulent atmosphere,” Atmos. Ocean. Opt. 29 (5), 431–440 (2016).CrossRefGoogle Scholar
  12. 12.
    L. N. Lavrinova and V. P. Lukin, Adaptive Correction of Laser Radiation Thermal and Turbulent Distortions Using a Deformable Mirror (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].Google Scholar
  13. 13.
    V. P. Kandidov, D. P. Krindach, O. A. Mitrofanov, V. V. Popov, and Yu. S. Solyanik, “The efficiency of modal control of the laser beam phase,” Atmos. Opt. 4 (12), 867–872 (1991).Google Scholar
  14. 14.
    O. I. Shanin, Adaptive Optics Systems for Slope Correction. Resonance Adaptive Optics (Tekhnosfera, Moscow, 2013) [in Russian].Google Scholar
  15. 15.
    S. P. Timoshenko, Course of the Elasticity Theory (Naukova Dumka, Kiev, 1972) [in Russian].Google Scholar
  16. 16.
    A. V. Chernykh, O. I. Shanin, and V. I. Shchipalkin, “Analysis of static errors of adaptive mirrors,” Optoelectron. Instrum. Data Process. 48 (2), 141–145 (2012).CrossRefGoogle Scholar
  17. 17.
    D. M. Lyakhov, “Optimal arrangement of actuators for square mirrors with free edges,” Optoelectron. Instrum. Data Process. 52 (1), 57–54 (2016).CrossRefGoogle Scholar
  18. 18.
    S. P. Timoshenko and S. Voinovskii-Kriger, Plates and Shells (Nauka, Moscow, 1966) [in Russian].Google Scholar
  19. 19.
    S. A. Rodionov, Fundamentals of Optics. Lecture Notes (ITMO, St. Petersburg, 2000) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Yagnyatinskiy
    • 1
  • D. M. Lyakhov
    • 1
  • A. N. Borshevnikov
    • 1
  • V. N. Fedoseyev
    • 1
  1. 1.Luch Research Institute of SPAPodolskRussia

Personalised recommendations