Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 156–161 | Cite as

On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I–equations

  • V. V. Vorob’ev
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

Asymptotic solutions for the problem of retrieving the distribution of the structure characteristic of refractive index fluctuations from measurement data on the backscattering enhancement factor have been found. The solutions are written in terms of fractional derivatives of the enhancement factor in the case of receivers with a small aperture or via usual derivatives in the case of receivers with a large aperture. Properties of the kernel of the integral equation from which the asymptotic formulas follow have been studied in detail. Attention is paid to the fact that the kernel is oscillating in the general case. The kernel oscillations slightly affect the magnitude of the enhancement factor; however, their effect on derivatives of this factor can be significant.

Keywords

turbulence lidars backscattering enhancement Volterra and Abel equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “The effect of intensification of back scattering by bodies that are situated in a medium having random inhomogeneities,” Radiophys. Quantum Electron. 16 (7), 818–823 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, USSR Inventor’s Certificate no. 35, Byull. Izobret., No. 21 (1989).Google Scholar
  3. 3.
    V. A. Banakh, I. N. Smalikho, and Ch. Werner, “Numerical simulation of effect of refractive turbulence on the statistics of a coherent lidar return in the atmosphere,” Appl. Opt. 39 (33), 5403–5414 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Banakh and I. N. Smalikho, “Determination of optical turbulence intensity by atmospheric backscattering of laser radiation,” Atmos. Ocean. Opt. 24 (5), 457–465 (2011).CrossRefGoogle Scholar
  5. 5.
    I. N. Smalikho, “Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation,” Atmos. Ocean. Opt. 26 (2), 135–139 (2013).CrossRefGoogle Scholar
  6. 6.
    V. A. Banakh, “Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere,” Atmos. Ocean. Opt. 26 (2), 90–95 (2013).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv., Atmos. Ocean. Phys. 48 (6), 585–594 (2012).CrossRefGoogle Scholar
  8. 8.
    A. S. Gurvich, “Lidar positioning of higher clear-air turbulence regions,” Izv., Atmos. Ocean. Phys. 50 (2), 143–151 (2014).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. S. Gurvich and M. I. Fortus, “Lidar sounding of the optical parameter of atmospheric turbulence,” Izv., Atmos. Ocean. Phys. 52 (2), 165–175 (2016).CrossRefGoogle Scholar
  10. 10.
    V. A. Banakh, I. A. Razenkov, and I. N. Smalikho, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part I. Computer simulation,” Opt. Atmos. Okeana 28 (1), 5–11 (2015).Google Scholar
  11. 11.
    V. A. Banakh and I. A. Razenkov, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part II. Construction and experiment,” Opt. Atmos. Okeana 28 (2), 113–119 (2015).Google Scholar
  12. 12.
    V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    V. V. Vorob’ev and A. G. Vinogradov, “Effect of background turbulence in lidar investigations of clear air turbulence,” Atmos. Oceanic Opt. 27 (2), 134–141 (2014).CrossRefGoogle Scholar
  14. 14.
    V. I. Tatarskii, Wave Propagation in a Turbulent Medium (Nauka, Moscow, 1967) [in Russian]; (Dover Publications, New York, 1967).Google Scholar
  15. 15.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Izd-vo Fiz. Mat. Lit., Moscow, 1963) [in Russian].Google Scholar
  16. 16.
    A. V. Manzhirov and A. D. Polyanin, Methods for Solution of Integral Equations: Handbook (Faktorial, Moscow, 1999) [in Russian].MATHGoogle Scholar
  17. 17.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives and Some Applications (Nauka i tekhnika, Minsk, 1987) [in Russian].MATHGoogle Scholar
  18. 18.
    V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II–Results of numerical simulation,” Atmos. Ocean. Opt. 30 (2), 162–168 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations