Skip to main content
Log in

D2O absorption spectrum in the region near 0.95 μm: the ν1 + 3ν3 rotational-vibrational band

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The D2О absorption spectrum was recorded between 10000 and 11400 cm–1 by a Fourier transform spectrometer with a spectral resolution of 0.05 cm–1. A multipass White-type cell with an optical path length of 24 m was used for the spectrum measurements. A light-emitting diode served as a radiation source, because it provides a higher brightness as compared to other emitters. A signal-to-noise ratio of 104 was gained for the strongest lines. During the D2О spectrum treatment, the experimental line list of about 100 lines of the ν1 + 3ν3 band was created. Spectroscopic parameters (line positions, intensities, and half widths) were calculated from fitting the experimental data to the Voigt line profiles by the least squares method. The analysis of the spectrum allowed us to derive new energy levels belonging to the vibrational state (103) of D2 16О.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mellau, S. N. Mikhailenko, E. N. Starikova, S. A. Tashkun, H. Over, and V. G. Tyuterev, “Rotational levels of the (000) and (010) states of D2 16O from hot emission spectra in the 320–860 cm–1 region,” J. Mol. Spectrosc. 224 (1), 32–60 (2004).

    Article  ADS  Google Scholar 

  2. A. Campargue, F. Mazzotti, S. Baguier, O. L. Polyansky, I. A. Vasilenko, and O. V. Naumenko, “High sensitivity ICLAS of D2O between 12450 and 12850 cm–1,” J. Mol. Spectrosc. 245 (2), 89–99 (2007).

    Article  ADS  Google Scholar 

  3. O. N. Ulenikov, S.-M. Hu, E. S. Bekhtereva, G. A. Onopenko, S.-G. He, X.-H. Wang, J. Zheng, and Q. Zhu, “High-resolution Fourier-transform spectrum of D2O in the region near 0.97 μm,” J. Mol. Spectrosc. 210 (1), 18–27 (2001).

    Article  ADS  Google Scholar 

  4. O. V. Naumenko, F. Mazzotti, O. M. Leshchishina, J. Tennyson, and A. Campargue, “Intracavity laser absorption spectroscopy of D2O between 11400 and 11900 cm–1,” J. Mol. Spectrosc. 242 (1), 1–9 (2007).

    Article  ADS  Google Scholar 

  5. J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, N. Denes, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, S.-M. Hu, T. Szidarovszky, and I. A. Vasilenko, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D2 16O, D2 17O, and D2 18O,” J. Quant. Spectrosc. Radiat. Transfer 142, 93–108 (2014).

    Article  ADS  Google Scholar 

  6. S. V. Shirin, N. F. Zobov, and O. L. Polyansky, “Theoretical line list of D2 16O up to 16000 cm–1 with an accuracy close to experimental,” J. Quant. Spectrosc. Radiat. Transfer 109 (4), 549–558 (2008).

    Article  ADS  Google Scholar 

  7. D. W. Schwenke, H. Partridge, and S. A. Tashkun, Schwenke–Partridge linelists (PS-2007-1000) for D16OD. http://spectra.iao.ru/1440x747/ru/mol/bands/sp1/7/.

  8. H. Bernstein and G. Herzberg, “Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths,” J. Chem. Phys. 16 (1), 30–38 (1948).

    Article  ADS  Google Scholar 

  9. V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells,” Atmos. Ocean. Opt. 26 (4), 329–336 (2013).

    Article  Google Scholar 

  10. J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, A. Derzia, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, L. Lodi, and I. Mizus, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).

    Article  ADS  Google Scholar 

  11. N. Lavrentieva, B. Voronin, O. Naumenko, A. Bykov, and A. Fedorova, “Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus, and Mars),” Icarus 236, 38–47 (2014).

    Article  ADS  Google Scholar 

  12. T. Kruglova and A. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).

    Article  ADS  Google Scholar 

  13. A. D. Bykov, O. V. Naumenko, A. M. Pshenichnikov, L. N. Sinitsa, and A. P. Shcherbakov, “An expert system for identification of lines in vibrational-rotational spectra,” Opt. Spectrosc. 94 (4), 528–537 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Serdukov.

Additional information

Original Russian Text © V.I. Serdukov, L.N. Sinitsa, T.V. Kruglova, E.R. Polovtseva, A.D. Bykov, A.P. Shcherbakov, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdukov, V.I., Sinitsa, L.N., Kruglova, T.V. et al. D2O absorption spectrum in the region near 0.95 μm: the ν1 + 3ν3 rotational-vibrational band. Atmos Ocean Opt 30, 129–133 (2017). https://doi.org/10.1134/S1024856017020129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017020129

Keywords

Navigation