Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 129–133 | Cite as

D2O absorption spectrum in the region near 0.95 μm: the ν1 + 3ν3 rotational-vibrational band

  • V. I. Serdukov
  • L. N. Sinitsa
  • T. V. Kruglova
  • E. R. Polovtseva
  • A. D. Bykov
  • A. P. Shcherbakov
Spectroscopy of Ambient Medium

Abstract

The D2О absorption spectrum was recorded between 10000 and 11400 cm–1 by a Fourier transform spectrometer with a spectral resolution of 0.05 cm–1. A multipass White-type cell with an optical path length of 24 m was used for the spectrum measurements. A light-emitting diode served as a radiation source, because it provides a higher brightness as compared to other emitters. A signal-to-noise ratio of 104 was gained for the strongest lines. During the D2О spectrum treatment, the experimental line list of about 100 lines of the ν1 + 3ν3 band was created. Spectroscopic parameters (line positions, intensities, and half widths) were calculated from fitting the experimental data to the Voigt line profiles by the least squares method. The analysis of the spectrum allowed us to derive new energy levels belonging to the vibrational state (103) of D2 16О.

Keywords

Fourier transform spectroscopy water vapor absorption spectra line positions and intensities D216О molecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mellau, S. N. Mikhailenko, E. N. Starikova, S. A. Tashkun, H. Over, and V. G. Tyuterev, “Rotational levels of the (000) and (010) states of D2 16O from hot emission spectra in the 320–860 cm–1 region,” J. Mol. Spectrosc. 224 (1), 32–60 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. Campargue, F. Mazzotti, S. Baguier, O. L. Polyansky, I. A. Vasilenko, and O. V. Naumenko, “High sensitivity ICLAS of D2O between 12450 and 12850 cm–1,” J. Mol. Spectrosc. 245 (2), 89–99 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    O. N. Ulenikov, S.-M. Hu, E. S. Bekhtereva, G. A. Onopenko, S.-G. He, X.-H. Wang, J. Zheng, and Q. Zhu, “High-resolution Fourier-transform spectrum of D2O in the region near 0.97 μm,” J. Mol. Spectrosc. 210 (1), 18–27 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    O. V. Naumenko, F. Mazzotti, O. M. Leshchishina, J. Tennyson, and A. Campargue, “Intracavity laser absorption spectroscopy of D2O between 11400 and 11900 cm–1,” J. Mol. Spectrosc. 242 (1), 1–9 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, N. Denes, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, S.-M. Hu, T. Szidarovszky, and I. A. Vasilenko, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D2 16O, D2 17O, and D2 18O,” J. Quant. Spectrosc. Radiat. Transfer 142, 93–108 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Shirin, N. F. Zobov, and O. L. Polyansky, “Theoretical line list of D2 16O up to 16000 cm–1 with an accuracy close to experimental,” J. Quant. Spectrosc. Radiat. Transfer 109 (4), 549–558 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    D. W. Schwenke, H. Partridge, and S. A. Tashkun, Schwenke–Partridge linelists (PS-2007-1000) for D16OD. http://spectra.iao.ru/1440x747/ru/mol/bands/sp1/7/.Google Scholar
  8. 8.
    H. Bernstein and G. Herzberg, “Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths,” J. Chem. Phys. 16 (1), 30–38 (1948).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells,” Atmos. Ocean. Opt. 26 (4), 329–336 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, A. Derzia, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, L. Lodi, and I. Mizus, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    N. Lavrentieva, B. Voronin, O. Naumenko, A. Bykov, and A. Fedorova, “Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus, and Mars),” Icarus 236, 38–47 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    T. Kruglova and A. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. Bykov, O. V. Naumenko, A. M. Pshenichnikov, L. N. Sinitsa, and A. P. Shcherbakov, “An expert system for identification of lines in vibrational-rotational spectra,” Opt. Spectrosc. 94 (4), 528–537 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Serdukov
    • 1
  • L. N. Sinitsa
    • 1
  • T. V. Kruglova
    • 1
  • E. R. Polovtseva
    • 1
  • A. D. Bykov
    • 1
  • A. P. Shcherbakov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations