Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 169–175 | Cite as

Optimization of sequential code for simulation of solar radiative transfer in a vertically heterogeneous environment

Atmospheric Radiation, Optical Weather, and Climate
  • 29 Downloads

Abstract

This article belongs to the series of works aimed at improving computing capacity of radiation codes implementing the Monte Carlo statistical method. A short description is given of the main blocks of basic (FORTRAN version) and optimized (C version) codes designed for calculation of sky radiance in a vertically heterogeneous medium. We present the results of tests which were aimed at evaluating the performance of each of the codes under different conditions in numerical experiments. In the cases examined, the performance indicators of the optimized C code were higher as compared with the basic one. It is shown that differences in execution time of the codes are reduced by increasing the optical density of the atmosphere, and using more productive computers. The developed C code can serve as a basis for creating a high-performance radiation code.

Keywords

solar radiation clouds Monte Carlo method numerical simulation optimization FORTRAN and C programming languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express. 10 (3), 159–170 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    H. Demers, N. Poirier-Demers, A. R. Couture, D. Joly, M. Guilmain, N. Jonge, and D. Drouin, “Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software,” Scanning 33 (3), 135–146 (2011).CrossRefGoogle Scholar
  3. 3.
    Q. Fang and D. R. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU architectures,” Biomed. Opt. Express. 3 (12), 3223–3230 (2012).CrossRefGoogle Scholar
  4. 4.
    S. K. Mohanty and V. Lakshminarayananan, “Optical techniques in optogenetics,” J. Mod. Opt. 62 (12), 949–970 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    3D Radiative Transfer in Cloudy Atmospheres Ed. by A. Marshak and A. Davis (Springer, Berlin; Heidelberg, 2005).Google Scholar
  6. 6.
    J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU computing,” Proc. IEEE 96 (5), 879–899 (2008).CrossRefGoogle Scholar
  7. 7.
    L. P. Bass and O. V. Nikolaeva, “Raduga-6—a program for computing stationary and nonstationary neutron and gamma-fields in 1D, 2D, and 3D domains,” in Proc. of the 7th Itern. Sci. Techn. Conf. “Safety Insurance of NPP with VVER” (OKB “GIDROPRESS”, Podolsk, 2011) [in Russian]Google Scholar
  8. 8.
    A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 Update,” Proc. SPIE 6233, 62331F (2006). doi 10.1117/12.665077ADSCrossRefGoogle Scholar
  9. 9.
    P. Ricchiazzi, S. Yang, C. Gautier, and D. Sowle, “SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere,” Bull. Amer. Meteorol. Soc. 79 (10), 2101–2114 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    R. W. Grosse-Kunstleve, T. C. Terwilliger, N. K. Sauter, and P. D. Adams, “Automatic Fortran to C++ conversion with FABLE,” Source Code Biol. Med. 7, Art. No. 5 (2012). doi 10.1186/1751-0473-7-5CrossRefGoogle Scholar
  11. 11.
    R. Buras, T. Dowling, and C. Emde, “New secondaryscattering correction in DISORT with increased efficiency for forward scattering,” J. Quant. Spectrosc. Radiat. Transfer 112 (12), 2028–2034 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    http://reef.atmos.colostate.edu/~gregm/xrtm/Google Scholar
  13. 13.
    S. A. Buehler, P. Eriksson, T. Kuhn, A. von Engeln, and C. Verdes, “ARTS, the Atmospheric Radiative Transfer Simulator,” J. Quant. Spectrosc. Radiat. Transfer 91 (1), 65–93 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    L. H. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comp. Methods Programs Biomed. 47, 131–146 (1995).CrossRefGoogle Scholar
  15. 15.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Method Monte Carlo in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  16. 16.
    M. A. Nazaraliev, Statistical Simulation of Radiation Processes in the Atmosphere (Nauka, Novosibirsk, 1990) [in Russian].MATHGoogle Scholar
  17. 17.
    M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Amer. Meteorol. Soc. 79 (5), 831–844 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    V. S. Komarov and N. Ya. Lomakina, Statistical Models of the Atmospheric Boundary Layer in Western Siberia (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].Google Scholar
  19. 19.
    S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library. Dedicated CDROM, Version 1.2 (1998); see also http://speclib. jpl.nasa.gov.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations