Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 123–128 | Cite as

Parameters of broadening of water molecule absorption lines by argon derived using different line profile models

  • T. M. Petrova
  • A. M. Solodov
  • A. P. Shcherbakov
  • V. M. Deichuli
  • A. A. Solodov
  • Yu. N. Ponomarev
  • T. Yu. Chesnokova
Spectroscopy of Ambient Medium


The water vapor absorption spectrum was measured in the spectral region 6700–7650 cm–1 with argon as a buffer gas. The room-temperature spectrum was measured using a Bruker IFS 125-HR Fourier Transform Spectrometer with high signal-to-noise ratio, with a spectral resolution of 0.01 cm–1, at argon pressures from 0 to 0.9 atm. The H2O absorption spectral line parameters are derived by fitting two line shape profiles (Voigt and speed-dependent Voigt) to the experimental spectrum. It is shown that the use of speed-dependent Voigt profile provides the best agreement with experimental data.


absorption line parameters water molecule Fourier transform spectrometer speed-dependent Voigt profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Application (Elsevier Science, Amsterdam; Boston, 2008).Google Scholar
  2. 2.
    D. Lisak, A. Cygan, D. Bermejo, J. L. Domenech, J. T. Hodges, and H. Tran, “Application of the Hartmann–Tran profile to analysis of H2O spectra,” J. Quant. Spectrosc. Radiat. Transfer 164, 221–233 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    J. Tennyson, P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H. Ngo, and O. N. Polyansky, “Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report),” Pure Appl. Chem. 86 (12), 1931–1943 (2014).CrossRefGoogle Scholar
  5. 5.
    R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89 (2), 472–474 (1953).ADSCrossRefGoogle Scholar
  6. 6.
    S. G. Rautian and I. I. Sobel’man, “Collisional effect on the Doppler broadening of spectral lines,” Uspekhi Fiz. Nauk 90 (2), 209–236 (1966).CrossRefGoogle Scholar
  7. 7.
    V. Fano, “Pressure broadening as a prototype of relaxation,” Phys. Rev. 131 (1), 259–268 (1963).ADSCrossRefMATHGoogle Scholar
  8. 8.
    P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral line profiles,” J. Quant. Spectrosc. Radiat. Transfer 12 (9), 1331–1342 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    S. G. Rautian, “Universal asymptotic profile of a spectral line under a small Doppler broadening,” Opt. Spectrosc. 90 (1), 47–58 (2001).CrossRefGoogle Scholar
  10. 10.
    L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122 (4), 1218–1223 (1961).ADSCrossRefMATHGoogle Scholar
  11. 11.
    D. Lisak, D. K. Havey, and J. T. Hodges, “Spectroscopic line parameters of water vapor for rotationvibration transitions near 7800 cm–1,” Phys. Rev. A 79, 052507-1–052507-10 (2009).CrossRefGoogle Scholar
  12. 12.
    R. Ciurylo and J. Szudy, “Speed-dependent pressure broadening and shift in the soft collision approximation,” J. Quant. Spectrosc. Radiat. Transfer 57 (1), 41–54 (1997).CrossRefGoogle Scholar
  13. 13.
    C. D. Boone, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105 (3), 525–532 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    Network for the Detection of Atmospheric Composition Change (NDACC). Scholar
  15. 15.
    Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, T. M. Petrova, and O. V. Naumenko, “FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra,” J. Quant. Spectrosc. Radiat. Transfer 177, 253–260 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, and A. M. Solodov, “Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures,” Atmos. Ocean. Opt. 29 (3), 211–215 (2016).CrossRefGoogle Scholar
  17. 17.
    T. M. Petrova, A. M. Solodov, A. A. Solodov, O. M. Lyulin, S. A. Tashkun, and V. I. Perevalov, “Measurements of 12C16O2 line parameters in the 8790–8860, 9340–9650 and 11430–11505 cm–1 wavenumber regions by means of Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 124, 21–27 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    M. A. Aizerman, E. I. Braverman, L. I. Rozonoer, Method of Potential Functions in the Theory of Machine Learning (Nauka, Moscow, 1970) [in Russian].Google Scholar
  19. 19.
    L. L. Levin, Introduction in the Image Recognition Theory (TGU, Tomsk, 2008) [in Russian].Google Scholar
  20. 20.
    A. P. Shcherbakov, “Application of pattern recognition theory to identification of the rovibrational spectral lines,” Atmos. Ocean. Opt. 10 (8), 591–597 (1997).Google Scholar
  21. 21.
    A. D. Bykov, O. V. Naumenko, A. M. Pshenichnikov, L. N. Sinitsa, and A. P. Shcherbakov, “An expert system for identification of lines in vibrational-rotational spectra,” Opt. Spectrosc. 94 (4), 528–537 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    T. Kruglova and A. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    A. Cygan, D. Lisak, W. Wojtewicz, J. Domysławska, J. T. Hodges, R.S. Trawinski, and R. Ciurylo, “Highsignal- to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev., A 85 (11), 022508 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    L. S. Rothman, I. E. Gordon, I. E. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, E. A. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, S. P. Muller, O. V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. M. Petrova
    • 1
  • A. M. Solodov
    • 1
  • A. P. Shcherbakov
    • 1
  • V. M. Deichuli
    • 1
    • 2
  • A. A. Solodov
    • 1
  • Yu. N. Ponomarev
    • 1
  • T. Yu. Chesnokova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of ScienceTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations