Skip to main content
Log in

Parameters of broadening of water molecule absorption lines by argon derived using different line profile models

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The water vapor absorption spectrum was measured in the spectral region 6700–7650 cm–1 with argon as a buffer gas. The room-temperature spectrum was measured using a Bruker IFS 125-HR Fourier Transform Spectrometer with high signal-to-noise ratio, with a spectral resolution of 0.01 cm–1, at argon pressures from 0 to 0.9 atm. The H2O absorption spectral line parameters are derived by fitting two line shape profiles (Voigt and speed-dependent Voigt) to the experimental spectrum. It is shown that the use of speed-dependent Voigt profile provides the best agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Application (Elsevier Science, Amsterdam; Boston, 2008).

    Google Scholar 

  2. D. Lisak, A. Cygan, D. Bermejo, J. L. Domenech, J. T. Hodges, and H. Tran, “Application of the Hartmann–Tran profile to analysis of H2O spectra,” J. Quant. Spectrosc. Radiat. Transfer 164, 221–233 (2015).

    Article  ADS  Google Scholar 

  3. N. H. Ngo, D. Lisak, H. Tran, and J.-M. Hartmann, “An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes,” J. Quant. Spectrosc. Radiat. Transfer 129, 89–100 (2013).

    Article  ADS  Google Scholar 

  4. J. Tennyson, P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H. Ngo, and O. N. Polyansky, “Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report),” Pure Appl. Chem. 86 (12), 1931–1943 (2014).

    Article  Google Scholar 

  5. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89 (2), 472–474 (1953).

    Article  ADS  Google Scholar 

  6. S. G. Rautian and I. I. Sobel’man, “Collisional effect on the Doppler broadening of spectral lines,” Uspekhi Fiz. Nauk 90 (2), 209–236 (1966).

    Article  Google Scholar 

  7. V. Fano, “Pressure broadening as a prototype of relaxation,” Phys. Rev. 131 (1), 259–268 (1963).

    Article  ADS  MATH  Google Scholar 

  8. P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral line profiles,” J. Quant. Spectrosc. Radiat. Transfer 12 (9), 1331–1342 (1972).

    Article  ADS  Google Scholar 

  9. S. G. Rautian, “Universal asymptotic profile of a spectral line under a small Doppler broadening,” Opt. Spectrosc. 90 (1), 47–58 (2001).

    Article  Google Scholar 

  10. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122 (4), 1218–1223 (1961).

    Article  ADS  MATH  Google Scholar 

  11. D. Lisak, D. K. Havey, and J. T. Hodges, “Spectroscopic line parameters of water vapor for rotationvibration transitions near 7800 cm–1,” Phys. Rev. A 79, 052507-1–052507-10 (2009).

    Article  Google Scholar 

  12. R. Ciurylo and J. Szudy, “Speed-dependent pressure broadening and shift in the soft collision approximation,” J. Quant. Spectrosc. Radiat. Transfer 57 (1), 41–54 (1997).

    Article  Google Scholar 

  13. C. D. Boone, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105 (3), 525–532 (2007).

    Article  ADS  Google Scholar 

  14. Network for the Detection of Atmospheric Composition Change (NDACC). http://www.ndsc.ncep.noaa.gov/.

  15. Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, T. M. Petrova, and O. V. Naumenko, “FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra,” J. Quant. Spectrosc. Radiat. Transfer 177, 253–260 (2016).

    Article  ADS  Google Scholar 

  16. I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, and A. M. Solodov, “Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures,” Atmos. Ocean. Opt. 29 (3), 211–215 (2016).

    Article  Google Scholar 

  17. T. M. Petrova, A. M. Solodov, A. A. Solodov, O. M. Lyulin, S. A. Tashkun, and V. I. Perevalov, “Measurements of 12C16O2 line parameters in the 8790–8860, 9340–9650 and 11430–11505 cm–1 wavenumber regions by means of Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 124, 21–27 (2013).

    Article  ADS  Google Scholar 

  18. M. A. Aizerman, E. I. Braverman, L. I. Rozonoer, Method of Potential Functions in the Theory of Machine Learning (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  19. L. L. Levin, Introduction in the Image Recognition Theory (TGU, Tomsk, 2008) [in Russian].

    Google Scholar 

  20. A. P. Shcherbakov, “Application of pattern recognition theory to identification of the rovibrational spectral lines,” Atmos. Ocean. Opt. 10 (8), 591–597 (1997).

    Google Scholar 

  21. A. D. Bykov, O. V. Naumenko, A. M. Pshenichnikov, L. N. Sinitsa, and A. P. Shcherbakov, “An expert system for identification of lines in vibrational-rotational spectra,” Opt. Spectrosc. 94 (4), 528–537 (2003).

    Article  ADS  Google Scholar 

  22. T. Kruglova and A. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).

    Article  ADS  Google Scholar 

  23. A. Cygan, D. Lisak, W. Wojtewicz, J. Domysławska, J. T. Hodges, R.S. Trawinski, and R. Ciurylo, “Highsignal- to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev., A 85 (11), 022508 (2012).

    Article  ADS  Google Scholar 

  24. L. S. Rothman, I. E. Gordon, I. E. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, E. A. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, S. P. Muller, O. V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. M. Petrova or A. M. Solodov.

Additional information

Original Russian Text © T.M. Petrova, A.M. Solodov, A.P. Shcherbakov, V.M. Deichuli, A.A. Solodov, Yu.N. Ponomarev, T.Yu. Chesnokova, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, T.M., Solodov, A.M., Shcherbakov, A.P. et al. Parameters of broadening of water molecule absorption lines by argon derived using different line profile models. Atmos Ocean Opt 30, 123–128 (2017). https://doi.org/10.1134/S1024856017020105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017020105

Keywords

Navigation