Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 203–208 | Cite as

Topology of plasmon-polariton vortices on an adaptive mirror

  • I. V. Dzedolik
  • V. S. Pereskokov
Adaptive and Integral Optics


TM modes of surface plasmon polaritons (SPP) can be excited on the surface of the metal layer of an adaptive mirror by an incident bulk electromagnetic wave. A part of the energy of the electromagnetic wave is involved in the excitation of SPP modes. E-modes of SPP are excited at reflection of TM modes from the boundaries of deformed regions on the adaptive mirror surface. The superposition of TM and E modes leads to generation of SPP vortices at singular points of the interference field. The topology of the SPP vortices changes depending on the curvature of the boundaries of deformed regions on the adaptive mirror surface. In this case, SPP vortices appear and disappear in the components of the Poynting vector, and the screw dislocations emerge at the mirror-reflected wavefront at the singular points of the field. Generation of SPP vortices on the metal mirror surface should be taken into account when calculating the wavefront correction parameters in adaptive systems.


adaptive mirror surface plasmon-polariton plasmon-polariton vortices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Lukin, “Adaptive optics in the formation of optical beams and images,” Phys.-Uspekhi 57 (6), 556–592 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    L. V. Antoshkin, N. N. Botygina, O. N. Emaleev, P. G. Kovadlo, P. A. Konyaev, E. A. Kopylov, V. P. Lukin, and V. D. Trifonov, “DM2-100-31 controllable mirror efficiency in adaptive optics system at Big Solar Vacuum Telescope,” Opt. Atmos. Okeana 25 (12), 1096–1098 (2012).Google Scholar
  3. 3.
    Surface Polaritons, Ed. by V.M. Agranovich and D.L. Mills (Nauka, Moscow, 1985) [in Russian].Google Scholar
  4. 4.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin; Heidelberg; New York; London; Paris; Tokyo, 1986).Google Scholar
  5. 5.
    S. A. Maier, Plasmonics: Theory and Applications (NITs “Regulyarnaya i khaoticheskaya dinamika”, Moscow; Izhevsk, 2011) [in Russian].Google Scholar
  6. 6.
    I. V. Dzedolik, Solitons and Nonlinear Waves of Phonon- Polaritons and Plasmon-Polaritons (Nova Science, New York, 2016).Google Scholar
  7. 7.
    J. F. Nye and M. V. Berry, “Dislocation in wave trains,” Proc. Roy. Soc., A 336 (1605), 165–190 (1974).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. R. Dennis, K. O' Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).CrossRefGoogle Scholar
  9. 9.
    P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92 (3), 111108 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100 (013101) (2012).Google Scholar
  12. 12.
    N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Natur. Mater. 13 (2), 139–150 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photon. J. 7, Art. ID 4801007 (2015).Google Scholar
  14. 14.
    J. Zhang, Z. Guo, C. Ge, W. Wang, R. Li, Y. Sun, F. Shen, S. Qu, and J. Gao, “Plasmonic focusing lens based on single-turn nano-pinholes array,” Opt. Express 23, 17883–17891 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    I. V. Dzedolik and V. Pereskokov, “Formation of vortices by interference of surface plasmon polaritons,” J. Opt. Soc. Amer., A 33 (5), 1004–1009 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22 (7), 1099–1120 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Physics and Technology InstituteVernadsky Crimean Federal UniversitySimferopolRussia

Personalised recommendations