Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 184–190 | Cite as

On cloud bottom boundary determination by digital stereo photography from the Earth’s surface

  • A. I. Chulichkov
  • M. S. Andreev
  • G. S. Golitsyn
  • N. F. Elansky
  • A. P. Medvedev
  • O. V. Postylyakov
Adaptive and Integral Optics

Abstract

In this paper, we studied the method for measuring the cloud bottom boundary altitude using the stereo pair of cloud images obtained using two digital photo cameras. We suggested a method for determining the camera orientation parameters using the nighttime images of star sky. The range to the cloud is calculated using the shift of the image of a cloud fragment as a whole. A given fragment on the photographs is identified using the methods of morphological image analysis. When the stereo base is 60 m and images are taken with a resolution of 1200 pixels within a field of view of 60°, the uncertainty does not exceed 10% when cloud altitude is less than 4 km. Optimizing the parameters of photography and increasing the stereo base may substantially improve the accuracy of the cloud base altitude estimation. Examples are presented of cloud bottom boundary determination using a prototype of the experimental setup as compared to data of a laser range finder.

Keywords

clouds cloud bottom boundary measuring the cloud characteristics remote sensing stereo photography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Golitsyn and I. I. Mokhov, “Estimates of the sensitivity and role of clouds in simple climate models,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 14 (8), 803–814 (1978).Google Scholar
  2. 2.
    V. A. Ivanov and O.V. Postylyakov, “Estimation of integral NO2 content in the atmospheric boundary layer from observations of scattered in zenith radiation,” Opt. Atmos. Okeana 23 (6), 471–475 (2010).Google Scholar
  3. 3.
    V. A. Ivanov, A. S. Elokhov, and O. V. Postylyakov, “On the Possibility of Estimating the Volume of NO2 Emissions in Cities Using Zenith Spectral Observations of Diffuse Solar Radiation near 450 nm,” Atmos. Ocean. Opt. 25 (6), 434–439 (2012).CrossRefGoogle Scholar
  4. 4.
    O. Postylyakov, A. Borovski, and V. Ivanov, “On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique,” Proc. SPIE 9680, 96804 (2015).ADSGoogle Scholar
  5. 5.
    G. S. Golitsyn and I. I. Mokhov, “Study of the clouds and radiation within the Soviet Climatological Program,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25 (8), 891–895 (1989).Google Scholar
  6. 6.
    S. V. Dvoryashin, “Remote measurements of the ratio of volume absorption coefficients of water and ice in clouds within the spectral range 2.15–2.35 μm,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38 (4), 523–528 (2002).Google Scholar
  7. 7.
    S. V. Zuev and N. P. Krasnenko, “Passive method for cloud base height detection,” Proc. SPIE 6522, 65221S.1–65221S.6 (2006). doi 10.1117/12.723217Google Scholar
  8. 8.
    M. Andreev, A. I. Chulichkov, A. P. Medvedev, and O. V. Postylyakov, “Estimation of cloud base height using ground-based stereo photography: Method and first results,” Proc. SPIE 9242, 924219.1–924219.7 (2014). doi 10.1117/12.2069824Google Scholar
  9. 9.
    M. S. Andreev, A. I. Chulichkov, A. S. Emilenko, A. P. Medvedev, and O. V. Postylyakov, “Estimation of cloud height using ground-based stereophotography: Methods, error analysis and validation,” Proc. SPIE 9259, 92590N.1–92590N.7 (2014). doi 10.1117/12.2069800Google Scholar
  10. 10.
    S. V. Zuev and N. P. Krasnenko, “Experimental research of ceilometer,” Opt. Atmos. Okeana 22 (1), 86–89 (2009).Google Scholar
  11. 11.
    Yu. P. Pyt’ev, Mathematical Simulation Techniques for Computer Measuring Systems (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  12. 12.
    Yu. P. Pyt’ev and A. I. Chulichkov, Methods for Morphological Analysis of Images (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  13. 13.
    J. Mrovlje and D. Vrancic, “Distance measuring based on stereoscopic pictures,” in Proc. 9th International PhD Workshop on Systems and Control: Young Generation Viewpoint, Izola, Slovenia, 2008, Vol. 2, pp. 1–6.Google Scholar
  14. 14.
    R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (University Press, Cambridge, Cambridge, 2004).CrossRefMATHGoogle Scholar
  15. 15.
    H. Walcher, Position Sensing—Angle and Distance Measurement for Engineers (Butterworth-Heinemann, 1994), 2nd ed.Google Scholar
  16. 16.
    A. I. Chulichkov, D. S. Demin, and S. N. Kulichkov, “Estimates of the relative time of signal delay from the analysis of signal shapes,” Vestn. MGU, Ser. 3, Fiz., Astronomiya, No. 6, 17–21 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Chulichkov
    • 1
    • 2
  • M. S. Andreev
    • 1
    • 2
  • G. S. Golitsyn
    • 2
  • N. F. Elansky
    • 2
  • A. P. Medvedev
    • 2
  • O. V. Postylyakov
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations