Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 111–122 | Cite as

Water vapor line wing absorption and violation of the long-wave approximation for molecular centers of mass

  • Ju. V. Bogdanova
  • T. E. Klimeshina
  • O. B. Rodimova
Spectroscopy of Ambient Medium

Abstract

Further development of the asymptotic line wing theory is presented where the long-wave approximation for the molecular centers of mass is violated. This provides long molecular trajectories going far beyond an elementary volume in the case of nonresonance light absorption. The occurrence of long trajectories is evidence for a certain degree of ordering of molecular chaos. The latter can be described by means of a modified semiclassical representation method to establish correlation between the displacement and velocity operators. An expression for the absorption coefficient is derived that allows an ambiguity concerning the estimation of the parameters of the potentials to be avoided, and the temperature dependence of the absorption coefficient in line wings to be described. In our earlier work, calculations of the absorption coefficient were performed with violation of the long-wave approximation for molecular centers of mass for H2O molecule in the 8–12 μm region using a diffusion model. This model is also employed in the present work for H2O absorption in the 3–5 μm window regions and for CO2 absorption in the 4.3-μm band wing to describe the temperature dependence of the absorption coefficient. Long molecular trajectories essential for the 8–12 and 3–5 μm H2O regions are shown to hardly play a role in the 4.3-μm CO2 band wing.

Keywords

line wing theory intermolecular interaction potential violation of the long-wave approximation Н2О СО2 continuum absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Hettner, “Infra-red absorption spectrum of watervapour,” Ann. Phys. (New York) 55 (6), 476–496 (1918).ADSGoogle Scholar
  2. 2.
    Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the watervapor continuum absorption: I. Far wings of allowed lines,” J. Chem. Phys. 128, 124313-1–124313-17 (2008).Google Scholar
  3. 3.
    Yu.V. Bogdanova and O.B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    T. E. Klimeshina and O. B. Rodimova, “Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region,” J. Quant. Spectrosc. Radiat. Transfer 119, 77–83 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    C. Leforestier, R. H. Tipping, and Q. Ma, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption,” J. Chem. Phys. 132 (16), 164302-1–164302-14 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Brown and R. H. Tipping, “Collision-induced absorption in dipolar molecule - homonuclear diatomic pairs,” in Weakly Interacting Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Kluwer Academic, Dordrecht, 2003).Google Scholar
  8. 8.
    Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311 To 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 1304–1313 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. I. Baranov, “The continuum absorption in H2O–N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2281–2286 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    D. J. Paynter, I. V. Ptashnik, K. P. Shine, and K. M. Smith, “Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions,” Geophys. Res. Lett. 34, L12808 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. M. McPheat, and R. G. Williams, “Laboratory measurements of the water vapor continuum in the 1200–8000 cm–1 region between 293 and 351 K,” J. Geophys. Res. 114, D21301-1–D21301-23 (2009).CrossRefGoogle Scholar
  13. 13.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor selfcontinuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D163057 (2011).CrossRefGoogle Scholar
  14. 14.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign- continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc. A 370 (1968), 2557–2577 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-μm atmospheric windows,” J. Directed Energy 2, 151–161 (2006).Google Scholar
  17. 17.
    D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, P. 381–391 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    D. E. Burch, Continuum Absorption by H 2 O. AFGLReport TR-0300 (AFGL, 1982).Google Scholar
  19. 19.
    D. E. Burch and R. L. Alt, Continuum Absorption by H 2 O in the 700–1200 cm –1 and 2400–2800 cm –1 windows. Report AFGL-TR-84-0128 (AFGL, 1984).Google Scholar
  20. 20.
    I. G. Kaplan and O. B. Rodimova, “Intermolecular interactions,” Sov. Phys. Usp. 21, 918–946 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    I. G. Kaplan, Introduction in the Theory of Intermolecular Interactions (Nauka, Moscow, 1982) [in Russian].Google Scholar
  22. 22.
    I. G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (John Wiley & Sons, Chichester, 2006).CrossRefGoogle Scholar
  23. 23.
    T. L. Hill, “Molecular clusters in imperfect gases,” J. Chem. Phys. 23 (4), 617–622 (1955).ADSCrossRefGoogle Scholar
  24. 24.
    O. B. Rodimova, “Continuum water vapor absorption in the 4000-8000 cm−1 region,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968002-1–968002-7 (2015).Google Scholar
  25. 25.
    E. P. Gordov and S. D. Tvorogov, Semiclassical Representation Method in the Quantum Theory (Nauka, Novosibirsk, 1984) [in Russia].Google Scholar
  26. 26.
    S. D. Tvorogov, E. P. Gordov, and O. B. Rodimova, “Intermolecular interactions and molecular spectroscopy: From the semiclassical representation of quantum theory to the line wing theory,” Atmos. Ocean. Opt. 20 (9), 692–695 (2007).Google Scholar
  27. 27.
    S. D. Tvorogov, “Problem of centers of mass within the problem of the contour of spectral lines. I. Existence of long trajectories,” Atmos. Oceanic Opt. 22 (3), 257–263 (2009).CrossRefGoogle Scholar
  28. 28.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Contour and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  29. 29.
    S. D. Tvorogov and O. B. Rodimova, Collisional Contours of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].Google Scholar
  30. 30.
    P. W. Rosenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83 (12), 6139–6144 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    S. D. Tvorogov and O. B. Rodimova, “Spectral line shape. I. Kinetic equation for arbitrary frequency detunings,” J. Chem. Phys. 102 (22), 8736–8745 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    S. D. Tvorogov and O. B. Rodimova, “Asymptotic and quasistatic approaches in spectral line shape theory,” Opt. Atmos. Okeana 25 (1), 31–45 (2012).Google Scholar
  33. 33.
    C. B. Ludwig, C. E. Ferriso, W. Malkmus, and T. P. Boynton, “High-temperature spectra of the purerotational band of H2O,” J. Quant. Spectrosc. Radiat. Transfer 5 (4), 697–714 (1965).ADSCrossRefGoogle Scholar
  34. 34.
    P. Varanasi, S. Chou, and S. S. Penner, “Absorption coefficients for water vapor in the 600–1000 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 8 (8), 1537–1541 (1968).ADSCrossRefGoogle Scholar
  35. 35.
    M. V. Tonkov and N. N. Filippov, “Effect of molecular interaction on the shap of rovibrational bands in gas spectra. Properties of the spectral function,” Opt. Spektrosk. 54 (5), 801–806 (1983).Google Scholar
  36. 36.
    Yu. V. Bogdanova and O. B. Rodimova, “Role of diffusion in the violation of the long-wave approximation in line wings,” Int. J. Quantum Chem. 112 (17), 2924–2931 (2012).CrossRefGoogle Scholar
  37. 37.
    S. D. Tvorogov and O. B. Rodimova, “Centre-of-mass problem in the spectral line shape task. II. Wave function and density matrix of the light absorbing molecule after optically active collision,” Opt. Atmos. Okeana 23 (8), 633–639 (2010).Google Scholar
  38. 38.
    Ya. P. Terletskii, Statistical Physics (Vyssh. shk., Moscow, 1966) [in Russian].Google Scholar
  39. 39.
    O. Singh and A. W. Joshi, “Effective potential for water vapour,” Pramana 15 (5), 407–412 (1980).ADSCrossRefGoogle Scholar
  40. 40.
    A. H. Harvey and E. W. Lemmon, “Correlation for the second virial coefficient of water,” J. Phys. Chem. Ref. Data 33 (1), 369–376 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    J. S. Rowlinson, “The second virial coefficients of polar gases,” Trans. Faraday Soc. 45, 974–984 (1949).CrossRefGoogle Scholar
  42. 42.
    Yu. V. Bogdanova, T. E. Klimeshina, and O. B. Rodimova, “Description of the H2O absorption in the 3–5 μm region under violation of the long-wave approximation in line wings,” Proc. SPIE 9292, P. 92920G-1–92920G-6 (2014).Google Scholar
  43. 43.
    Yu. V. Bogdanova and O. B. Rodimova, “Accounting for diffusion during calculation of the absorption coefficient in the 4.3-μm CO2 band wing,” in Proc. of the XVII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2011), p. A-100–A-103 [in Russian].Google Scholar
  44. 44.
    J. M. Hartmann, M. Y. Perrin, Q. Ma, and R. H. Tipping, “The infrared continuum of pure water vapor: Calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49 (6), 675–691 (1993).ADSCrossRefGoogle Scholar
  45. 45.
    C. Cousin, R. LeDoucen, C. Boulet, A. Henry, and D. Robert, “Line coupling in the temperature and frequency dependence of absorption in the microwindows of the 4.3-μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 36 (6), 521–538 (1986).ADSCrossRefGoogle Scholar
  46. 46.
    O. B. Rodimova, “Spectral line profile of self-broadened CO2 from the center to the far wing,” Atmos. Ocean. Opt. 15 (9), 694–703 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Ju. V. Bogdanova
    • 1
  • T. E. Klimeshina
    • 2
  • O. B. Rodimova
    • 2
  1. 1.Tomsk State Pedagogical UniversityTomskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations