Skip to main content
Log in

Water vapor line wing absorption and violation of the long-wave approximation for molecular centers of mass

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Further development of the asymptotic line wing theory is presented where the long-wave approximation for the molecular centers of mass is violated. This provides long molecular trajectories going far beyond an elementary volume in the case of nonresonance light absorption. The occurrence of long trajectories is evidence for a certain degree of ordering of molecular chaos. The latter can be described by means of a modified semiclassical representation method to establish correlation between the displacement and velocity operators. An expression for the absorption coefficient is derived that allows an ambiguity concerning the estimation of the parameters of the potentials to be avoided, and the temperature dependence of the absorption coefficient in line wings to be described. In our earlier work, calculations of the absorption coefficient were performed with violation of the long-wave approximation for molecular centers of mass for H2O molecule in the 8–12 μm region using a diffusion model. This model is also employed in the present work for H2O absorption in the 3–5 μm window regions and for CO2 absorption in the 4.3-μm band wing to describe the temperature dependence of the absorption coefficient. Long molecular trajectories essential for the 8–12 and 3–5 μm H2O regions are shown to hardly play a role in the 4.3-μm CO2 band wing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hettner, “Infra-red absorption spectrum of watervapour,” Ann. Phys. (New York) 55 (6), 476–496 (1918).

    ADS  Google Scholar 

  2. Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the watervapor continuum absorption: I. Far wings of allowed lines,” J. Chem. Phys. 128, 124313-1–124313-17 (2008).

    Google Scholar 

  3. Yu.V. Bogdanova and O.B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).

    Article  ADS  Google Scholar 

  4. T. E. Klimeshina and O. B. Rodimova, “Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region,” J. Quant. Spectrosc. Radiat. Transfer 119, 77–83 (2013).

    Article  ADS  Google Scholar 

  5. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  6. C. Leforestier, R. H. Tipping, and Q. Ma, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption,” J. Chem. Phys. 132 (16), 164302-1–164302-14 (2010).

    Article  Google Scholar 

  7. A. Brown and R. H. Tipping, “Collision-induced absorption in dipolar molecule - homonuclear diatomic pairs,” in Weakly Interacting Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A.A. Vigasin (Kluwer Academic, Dordrecht, 2003).

    Google Scholar 

  8. Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).

    Article  ADS  Google Scholar 

  9. Yu. I. Baranov and W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311 To 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 1304–1313 (2011).

    Article  ADS  Google Scholar 

  10. Yu. I. Baranov, “The continuum absorption in H2O–N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2281–2286 (2011).

    Article  ADS  Google Scholar 

  11. D. J. Paynter, I. V. Ptashnik, K. P. Shine, and K. M. Smith, “Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions,” Geophys. Res. Lett. 34, L12808 (2007).

    Article  ADS  Google Scholar 

  12. D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. M. McPheat, and R. G. Williams, “Laboratory measurements of the water vapor continuum in the 1200–8000 cm–1 region between 293 and 351 K,” J. Geophys. Res. 114, D21301-1–D21301-23 (2009).

    Article  Google Scholar 

  13. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor selfcontinuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D163057 (2011).

    Article  Google Scholar 

  14. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign- continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. Roy. Soc. A 370 (1968), 2557–2577 (2012).

    Article  ADS  Google Scholar 

  15. I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    Article  ADS  Google Scholar 

  16. W. E. Bicknell, S. D. Cecca, M. K. Griffin, S. D. Swartz, and A. Flusberg, “Search for low-absorption regions in the 1.6- and 2.1-μm atmospheric windows,” J. Directed Energy 2, 151–161 (2006).

    Google Scholar 

  17. D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, P. 381–391 (2013).

    Article  ADS  Google Scholar 

  18. D. E. Burch, Continuum Absorption by H 2 O. AFGLReport TR-0300 (AFGL, 1982).

    Google Scholar 

  19. D. E. Burch and R. L. Alt, Continuum Absorption by H 2 O in the 700–1200 cm –1 and 2400–2800 cm –1 windows. Report AFGL-TR-84-0128 (AFGL, 1984).

    Google Scholar 

  20. I. G. Kaplan and O. B. Rodimova, “Intermolecular interactions,” Sov. Phys. Usp. 21, 918–946 (1978).

    Article  ADS  Google Scholar 

  21. I. G. Kaplan, Introduction in the Theory of Intermolecular Interactions (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  22. I. G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (John Wiley & Sons, Chichester, 2006).

    Book  Google Scholar 

  23. T. L. Hill, “Molecular clusters in imperfect gases,” J. Chem. Phys. 23 (4), 617–622 (1955).

    Article  ADS  Google Scholar 

  24. O. B. Rodimova, “Continuum water vapor absorption in the 4000-8000 cm−1 region,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968002-1–968002-7 (2015).

    Google Scholar 

  25. E. P. Gordov and S. D. Tvorogov, Semiclassical Representation Method in the Quantum Theory (Nauka, Novosibirsk, 1984) [in Russia].

    Google Scholar 

  26. S. D. Tvorogov, E. P. Gordov, and O. B. Rodimova, “Intermolecular interactions and molecular spectroscopy: From the semiclassical representation of quantum theory to the line wing theory,” Atmos. Ocean. Opt. 20 (9), 692–695 (2007).

    Google Scholar 

  27. S. D. Tvorogov, “Problem of centers of mass within the problem of the contour of spectral lines. I. Existence of long trajectories,” Atmos. Oceanic Opt. 22 (3), 257–263 (2009).

    Article  Google Scholar 

  28. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Contour and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  29. S. D. Tvorogov and O. B. Rodimova, Collisional Contours of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  30. P. W. Rosenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83 (12), 6139–6144 (1985).

    Article  ADS  Google Scholar 

  31. S. D. Tvorogov and O. B. Rodimova, “Spectral line shape. I. Kinetic equation for arbitrary frequency detunings,” J. Chem. Phys. 102 (22), 8736–8745 (1995).

    Article  ADS  Google Scholar 

  32. S. D. Tvorogov and O. B. Rodimova, “Asymptotic and quasistatic approaches in spectral line shape theory,” Opt. Atmos. Okeana 25 (1), 31–45 (2012).

    Google Scholar 

  33. C. B. Ludwig, C. E. Ferriso, W. Malkmus, and T. P. Boynton, “High-temperature spectra of the purerotational band of H2O,” J. Quant. Spectrosc. Radiat. Transfer 5 (4), 697–714 (1965).

    Article  ADS  Google Scholar 

  34. P. Varanasi, S. Chou, and S. S. Penner, “Absorption coefficients for water vapor in the 600–1000 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 8 (8), 1537–1541 (1968).

    Article  ADS  Google Scholar 

  35. M. V. Tonkov and N. N. Filippov, “Effect of molecular interaction on the shap of rovibrational bands in gas spectra. Properties of the spectral function,” Opt. Spektrosk. 54 (5), 801–806 (1983).

    Google Scholar 

  36. Yu. V. Bogdanova and O. B. Rodimova, “Role of diffusion in the violation of the long-wave approximation in line wings,” Int. J. Quantum Chem. 112 (17), 2924–2931 (2012).

    Article  Google Scholar 

  37. S. D. Tvorogov and O. B. Rodimova, “Centre-of-mass problem in the spectral line shape task. II. Wave function and density matrix of the light absorbing molecule after optically active collision,” Opt. Atmos. Okeana 23 (8), 633–639 (2010).

    Google Scholar 

  38. Ya. P. Terletskii, Statistical Physics (Vyssh. shk., Moscow, 1966) [in Russian].

    Google Scholar 

  39. O. Singh and A. W. Joshi, “Effective potential for water vapour,” Pramana 15 (5), 407–412 (1980).

    Article  ADS  Google Scholar 

  40. A. H. Harvey and E. W. Lemmon, “Correlation for the second virial coefficient of water,” J. Phys. Chem. Ref. Data 33 (1), 369–376 (2004).

    Article  ADS  Google Scholar 

  41. J. S. Rowlinson, “The second virial coefficients of polar gases,” Trans. Faraday Soc. 45, 974–984 (1949).

    Article  Google Scholar 

  42. Yu. V. Bogdanova, T. E. Klimeshina, and O. B. Rodimova, “Description of the H2O absorption in the 3–5 μm region under violation of the long-wave approximation in line wings,” Proc. SPIE 9292, P. 92920G-1–92920G-6 (2014).

    Google Scholar 

  43. Yu. V. Bogdanova and O. B. Rodimova, “Accounting for diffusion during calculation of the absorption coefficient in the 4.3-μm CO2 band wing,” in Proc. of the XVII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2011), p. A-100–A-103 [in Russian].

    Google Scholar 

  44. J. M. Hartmann, M. Y. Perrin, Q. Ma, and R. H. Tipping, “The infrared continuum of pure water vapor: Calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49 (6), 675–691 (1993).

    Article  ADS  Google Scholar 

  45. C. Cousin, R. LeDoucen, C. Boulet, A. Henry, and D. Robert, “Line coupling in the temperature and frequency dependence of absorption in the microwindows of the 4.3-μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 36 (6), 521–538 (1986).

    Article  ADS  Google Scholar 

  46. O. B. Rodimova, “Spectral line profile of self-broadened CO2 from the center to the far wing,” Atmos. Ocean. Opt. 15 (9), 694–703 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju. V. Bogdanova.

Additional information

Original Russian Text © Ju.V. Bogdanova, T.E. Klimeshina, O.B. Rodimova, 2016, published in Optika Atmosfery i Okeana.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanova, J.V., Klimeshina, T.E. & Rodimova, O.B. Water vapor line wing absorption and violation of the long-wave approximation for molecular centers of mass. Atmos Ocean Opt 30, 111–122 (2017). https://doi.org/10.1134/S1024856017020063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017020063

Keywords

Navigation