Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 191–197 | Cite as

Numerical simulation of sensorless adaptive phase correction of regular, vortical, and incoherent multimode laser beams

  • V. A. Bogachev
  • S. G. Garanin
  • F. A. Starikov
  • R. A. Shnyagin
Adaptive and Integral Optics


Some aspects are considered of the phase correction of regular and vortex (speckled) laser beams by a flexible adaptive mirror, with the surface control using the stochastic parallel gradient (SPG) algorithm, without wavefront sensor. It is shown that the optimal choice of the criterion function (metric) and basis functions allows one to improve the phase correction accuracy and the rate of SPG algorithm convergence. A possibility of partial phase correction of incoherent multimode radiation is shown to be implementable, e.g., in a laser cavity with an optically inhomogeneous gain medium.


adaptive mirror phase correction of laser beam optical aberrations stochastic parallel gradient algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Lukin, “Adaptive optics in the formation of optical beams and images,” Phys.-Uspekhi 57 (6), 556–592 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    S. G. Garanin, A. N. Manachinsky, F. A. Starikov, and S. V. Khokhlov, “Phase correction of laser radiation with the use of adaptive optical systems at the Russian Federal Nuclear Center—Institute of Experimental Physics,” Optoelectron. Instr. Data Proc. 48 (2), 134–141 (2012).CrossRefGoogle Scholar
  3. 3.
    F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Wave front reconstruction of an optical vortex by Hartmann–Shack sensor,” Opt. Lett. 32 (16), 2291–2293 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, and F. A. Starikov, “Algorithms for the reconstruction of the singular wave front of laser radiation: analysis and improvement of accuracy,” Quantum Electron. 38 (7), 673–677 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    F. A. Starikov, G. G. Kochemasov, M. O. Koltygin, S.M. Kulikov, A. N. Manachinsky, N. V. Maslov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror,” Opt. Lett. 34 (15), 2264–2266 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Babin, O. I. Beloshitskaya, V. A. Bogachev, S. G. Garanin, M. A. Glukhov, M. O. Koltygin, A. V. Kopalkin, R. S. Kuzin, S. M. Kulikov, A. N. Manachinsky, S. N. Nosov, F. A. Starikov, S. A. Suharev, and V.V. Feoktistov, “Measurement of optical distortions of a cesium vapor laser by means of Shack–Hartmann sensor,” in Technical Program of the 16th Int. Conf. on Laser Optics “LO-2014". St. Petersburg, June 30–July 4, 2014, p. 33.Google Scholar
  7. 7.
    M. A. Vorontsov, A. V. Koryabin, V. I. Polezhaev, and V. I. Shmal’gauzen, “Adaptive intracavity control of mode composition of the radiation emitted by a solidstate laser,” Sov. J. Quantum Electron. 21 (8), 818 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    A. Abbas, L. N. Kaptsov, A. V. Kudryashov, and T. Yu. Cherezova, “Control of parameters of solid-state industrial YAG:Nd3+ laser radiation using methods of adaptive optics. I. Laser cavity with an adaptive mirror,” Sov. J. Quantum Electron. 22 (6), 530–532 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16 (15), 10943–10955 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    P. Yang, X. Lei, R. Yang, M. Ao, L. Dong, and B. Xu, “Fast and stable enhancement of the far-field peak power by use of an intracavity deformable mirror,” Appl. Opt., B 100 (3), 591–595 (2010).ADSGoogle Scholar
  11. 11.
    M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction based on parallel gradientdescent optimization,” Opt. Lett. 22 (12), 907–909 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Bogachev
    • 1
  • S. G. Garanin
    • 1
    • 2
  • F. A. Starikov
    • 1
    • 3
  • R. A. Shnyagin
    • 1
  1. 1.Russian Federal Nuclear CenterAll-Russian Research Institute of Experimental PhysicsSarovRussia
  2. 2.National Research Nuclear University MEPhiMoscowRussia
  3. 3.Sarov Physical-Technical Institute MEPhiSarovRussia

Personalised recommendations