Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 144–155 | Cite as

Information system for molecular spectroscopy: 7—systematization of information resources on the main isotopologue of the methanol molecule

  • A. Yu. Akhlestin
  • S. S. Voronina
  • A. I. Privezentsev
  • O. B. Rodimova
  • A. Z. Fazliev
Spectroscopy of Ambient Medium
  • 31 Downloads

Abstract

Systematization of information resources in quantitative spectroscopy is performed using the methanol molecule as an example and applying the facilities of the W@DIS information system (W@DIS IS). The choice of quantum numbers for a methanol state is explained; brief descriptions of about 40 publications containing spectral characteristics of methanol and the description of main applications of W@DIS IS are given. The interfaces used for the analysis of consistency of wavenumbers in all data sources are described, as well as the interface of the application for forming the list of measured transitions.

Keywords

methanol rotation-vibrational transitions W@DIS information system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Rixon, M. L. Dubernet, N. Piskunov, N. Walton, N. Mason, P. Le Sidaner, S. Schlemmer, J. Tennyson, A. Akram, K. Benson, J. Bureau, M. Doronin, C. Endres, U. Heiter, C. Hill, F. Kupka, L. Nenadovic, T. Marquart, G. Mulas, Y. Ralchenko, A. Shih, K. Smith, B. Schmitt, D. Witherick, V. Boudon, J. L. Culhane, M. S. Dimitrijevic, A. Z. Fazliev, C. Joblin, G. Leto, P. A. Loboda, H. E. Mason, C.Mendoza, T. J. Millar, L. A. Nunez, V. I. Perevalov, L. S. Rothman, E. Roueff, T. A. Ryabchikova, A. Ryabtsev, S. Sahal-Brechot, V. G. Tyuterev, V. Wakelam, and C. J. Zeippen, “VAMDC—The Virtual Atomic and Molecular Data Centre—a new way to disseminate atomic and molecular data—VAMDC level 1 release,” AIP Conf. Proc. 1344, P. 107–115 (2011).CrossRefADSGoogle Scholar
  2. 2.
    A. I. Privezentsev, D. F. Tsar’kov, and A. Z. Fazliev, “Knowledge bases for description of information resources in molecular spectroscopy. 3. Formation of basic and applied ontology,” Electon. Biblioteki. No. 2 (2012). http://www.elbib.ru/index.phtml?page-elbib/rus/journal/2012/part2/PTF.Google Scholar
  3. 3.
    S. S. Voronina, A. I. Privezentsev, D. V. Tsar’kov, and A. Z. Fazliev, “An ontological description of states and transitions in quantitative spectroscopy,” Proc. SPIE 9292, 92920C-1–92920C-10 (2014).Google Scholar
  4. 4.
    S. S. Voronina, A. I. Privezentsev, D. V. Tsarkov, and A. Z. Fazliev, “Different ontological representations of a subject domain,” in Proc. of the XVI All-Russian Scientific Conference “Digital Libraries: Advanced Methods and Technologies " (OIYaI, Dubna, 2014), p. 124–130 [in Russian].Google Scholar
  5. 5.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, N. F. Zobov, A. R. Al Derzi, C. Fabrie, A. Fazliev, T. Furtenbacher, I. E. Gordon, L. Lodi, and I. Mizus, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).CrossRefADSGoogle Scholar
  6. 6.
    E. R. Polovtseva, N. A. Lavrentiev, S. S. Voronina, O. V. Naumenko, and A. Z. Fazliev, “Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule,” Atmos. Ocean. Opt. 25 (2), 157–165 (2012).CrossRefGoogle Scholar
  7. 7.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, L. Daumont, T. Furtenbacher, A. Z. Fazliev, I. E. Gordon, S. N. Mikhailenko, and S. V. Shirin, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I. Energy levels and transition wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. Radiat. Transfer 110 (9–10), 573–596 (2009).CrossRefADSGoogle Scholar
  8. 8.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S.-M. Hu, S. N. Mikhailenko, and B. A. Voronin, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II. Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2160–2184 (2010).CrossRefADSGoogle Scholar
  9. 9.
    J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Császár, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, N. Denes, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, S.-M. Hu, T. Szidarovszky, and I. A. Vasilenko, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D2 16O, D2 17O, and D2 18O,” J. Quant. Spectrosc. Radiat. Transfer 142, 93–108 (2014).CrossRefADSGoogle Scholar
  10. 10.
    A. Yu. Akhlestin, S. S. Voronina, O. V. Naumenko, E. R. Polovtseva, and A. Z. Fazliev, “Information system for molecular spectroscopy: 6—Systematization of spectral data on deutero-substituted isotopologues of the hydrogen sulfide molecule,” Atmos. Ocean. Opt. 30 (2), 134–143 (2017).CrossRefGoogle Scholar
  11. 11.
    S. S. Voronina, S. N. Yurchenko, and A. Z. Fazliev, “Systematization of the published spectroscopic parameters of ammonia,” in Abstr. of the 22nd Colloquium on High Resolution Molecular Spectroscopy (2011), p. 163.Google Scholar
  12. 12.
    N. A. Lavrentiev, A. I. Privesentsev, N. N. Filippov, and A. Z. Fazliev, “Complete set of published spectral data on CO2 molecule,” Abstr. of the 22nd Colloquium on High Resolution Molecular Spectroscopy (2011), p. 353.Google Scholar
  13. 13.
    A. Y. Akhlestin, S. S. Voronina, A. I. Privesentsev, and A. Z. Fazliev, “Systematization of published data on phosphine isotopologoues,” Proc. SPIE 8696, 8696–8738 (2012).ADSGoogle Scholar
  14. 14.
    S. S. Voronina, A. Yu. Akhlestin, A. V. Kozodoev, N. A. Lavrentiev, A. I. Prevezentsev, A. Z. Fazliev, and O. V. Naumenko, “Systematization of published spectral data on sulfur dioxide molecule and its isotopologues,” Proc. SPIE 9292, 92920 (2014).ADSGoogle Scholar
  15. 15.
    S. S. Voronina, N. A. Lavrentiev, A. I. Privezentsev, O. B. Rodimova, and A. Z. Fazliev, “A systematization of spectral data on the methanol molecule,” Proc. SPIE 9680, 929208 (2015).Google Scholar
  16. 16.
    Z. V. Apanovich, P. S. Vinokurov, A. Yu. Akhlestin, A. I. Privezentsev, and A. Z. Fazliev, “Digital library of scientific papers on quantitative spectroscopy,” in Proc. of the 14th All-Russian Scientific Conference “Digital Libraries: Advanced Methods and Technologies, Digital Collections—RCDL'2012" (Pereslavl, 2012), p. 53–59 [in Russian].Google Scholar
  17. 17.
    A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, O. B. Rodimova, S. D. Tvorogov, M. V. Tonkov, A. Z. Fazliev, and N. N. Filippov, Information Aspects of Molecular Spectroscopy (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].Google Scholar
  18. 18.
    A. D. Bykov, A. Z. Fazliev, N. N. Filippov, A. V. Kozodoev, A. I. Privezentsev, L. N. Sinitsa, M. V. Tonkov, and M. Yu. Tretyakov, “Distributed information system on atmospheric spectroscopy,” Geophys. Res. Abstr. 9, 01906 (2007).Google Scholar
  19. 19.
    A. Fazliev, A. Privezentsev, D. Tsarkov, and J. Tennyson, “Ontology-based content trust support of expert information resources in quantitative spectroscopy,” in Proc. of the 4th Intern. Conf. “Knowledge Engineering and the Semantic Web”, St. Petersburg, Russia, October 7–9, 2013 (Springer, 2013), p. 15–28.Google Scholar
  20. 20.
    G. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, Microwave, Infrared and Laser Transitions of Methanol: Atlas of Assigned Lines from 0 to 1258 cm –1 (CRC Press, Boca Raton; New York; London; Tokyo, 1995).Google Scholar
  21. 21.
    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y.Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110 (9), 533–572 (2009).CrossRefADSGoogle Scholar
  22. 22.
    N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, BennerD. Chris, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L. H. Coudert, A. Cous-tenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J.-M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, L.-H. Xu, O. M. Lyulin, J.-Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen- Ahmadi, H. S. P. Muller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, J. Tennyson, R. A. Toth, A.-C. Vandaele, and J. V. Auwera, “The 2009 edition of the GEISA spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 112 (15), 2395–2445 (2011).CrossRefADSGoogle Scholar
  23. 23.
    H. C. Longuet-Higgins, “The symmetry groups of non-rigid molecules,” Mol. Phys. 6 (5), 445–460 (1963).CrossRefMATHADSGoogle Scholar
  24. 24.
    P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic Press, San Francisco; London; New York, 1979).MATHGoogle Scholar
  25. 25.
    H. Frei, A. Bauder, and H. H. Gunthard, The Isometric Group of Nonrigid Molecules, Large Amplitude Motion in Molecules (Springer, Berlin; New York, 1979).MATHGoogle Scholar
  26. 26.
    S. L. Altmann, “The symmetry of nonrigid molecules: The Schrodinger supergroup,” Proc. Roy. Soc. A. London 298, 184–203 (1967).CrossRefMATHADSGoogle Scholar
  27. 27.
    S. L. Altmann, “More on the symmetry of non-rigid molecules,” Mol. Phys. 21 (4), 587–607 (1971).CrossRefADSGoogle Scholar
  28. 28.
    Y. G. Smeyers, “Introduction to group theory for nonrigid molecules,” Adv. Quant. Chem. 24 (1), 1–77 (1992).CrossRefGoogle Scholar
  29. 29.
    A. V. Burenin, “The "chain of symmetry groups” concept in the theory of molecular spectra,” Phys.- Uspekhi 36 (3), 177–187 (1993).CrossRefADSGoogle Scholar
  30. 30.
    A. V. Burenin, The Symmetry of Intramolecular Quantum Dynamics (IPF RAN, N. Novgorod, 2012) [in Russian].CrossRefMATHGoogle Scholar
  31. 31.
    A. V. Burenin, “Configurational degeneracy of exchange type in the vibration-rotation spectrum of a nonrigid molecule,” J. Struct. Chemistry 36 (1), 6–12 (1995).CrossRefGoogle Scholar
  32. 32.
    A. V. Burenin, “A new view of the picture of the torsional motion in the methanol molecule CH3OH,” Opt. Spectrosc. 85 (6), 863–868 (1998).ADSGoogle Scholar
  33. 33.
    J. S. Koehler and D. M. Dennison, “Hindered rotation in methyl alcohol,” Phys. Rev. 57, 1006–1021 (1940).CrossRefMATHADSGoogle Scholar
  34. 34.
    R. M. Lees, Li-Hong Xu, J.W.C. Johns, B.P. Winnewisser, and M. Lock, “Rotation-torsion-vibration term-value mapping for CH3OH: Torsion-mediated doorways and corridors for intermode population transfer,” J. Mol. Spectrosc. 243 (2), 168–181 (2007).CrossRefADSGoogle Scholar
  35. 35.
    J. C. Pearson, B. J. Drouin, S. Yu, and H. Gupta, “Microwave spectroscopy of methanol between 2.48 and 2.77 THz,” J. Opt. Soc. Amer., B. 28 (10), 2549–2577 (2011).CrossRefADSGoogle Scholar
  36. 36.
    R. M. Lees, “Torsion-vibration-rotation interactions in methanol. III. Barrier height in an excited vibrational state of CH3OH,” J. Chem. Phys. 57 (2), 824–826 (1972).CrossRefADSGoogle Scholar
  37. 37.
    Y. Y. Kwan and D. M. Dennison, “Analysis of the torsion- rotation spectra of the isotopic methanol molecules,” J. Mol. Spectr. 43 (2), 291–319 (1972).CrossRefADSGoogle Scholar
  38. 38.
    R. M. Lees, “Torsion-vibration-rotation interactions in methanol. IV. Microwave spectrum of CH3OH,” J. Chem. Phys. 57 (2), 824–826 (1972).CrossRefADSGoogle Scholar
  39. 39.
    H. E. Radford, “Remeasurement of the rest frequency of the 36-centimeter radio line of methanol,” Astrophys. J. 174, 207–208 (1972).CrossRefADSGoogle Scholar
  40. 40.
    V. Stern, C. Belorgeot, J. Kachmarsky, and K. D. Moller, “Far infrared spectrum of the internal rotation of CH3OH and CD3OH,” J. Mol. Spectrosc. 67 (1–3), 244–264 (1977).CrossRefADSGoogle Scholar
  41. 41.
    D. J. Bedwell, G. Duxbury, H. Herman, and C. A. Orengo, “Laser Stark and optical-optical double resonance studies of some molecules used in optically pumped submillimetre lasers,” Infrared Phys. 18 (5–6), 453–460 (1978).CrossRefADSGoogle Scholar
  42. 42.
    K. Ichimura, H. Masumoto, and Y. Kitagawa, “Highresolution spectroscopy of some gaseous molecules with a submillimetre Fourier transform spectrometer,” Infrared Phys. 18 (5–6), 577–583 (1978).ADSGoogle Scholar
  43. 43.
    T. L. Worchesky, “Assignment of methyl alcohol submillimeter laser transitions,” Opt. Lett. 3 (6), 232–234 (1978).CrossRefADSGoogle Scholar
  44. 44.
    J. P. Sattler, W. A. Riessler, and T. L. Worchesky, “Diode laser spectra of the C–O stretch band of gaseous methyl alcohol,” Infrared Phys. 19 (2), 217–224 (1979).CrossRefADSGoogle Scholar
  45. 45.
    F. J. Lovas, R. D. Suenram, L. E. Snyder, J. M. Hollis, and R. M. Lees, “Detection of the torsionally excited state of methanol in Orion A,” Astrophys. J. 253 (1), 149–153 (1982).CrossRefADSGoogle Scholar
  46. 46.
    P. Bernard and J. R. Izatt, “New CH3OH laser lines pumped with a fine-tuned high-power CO2-TEA laser,” Int. J. Infrared Millim. Waves 4 (1), 21–35 (1983).CrossRefADSGoogle Scholar
  47. 47.
    G. O. Brink, “Absorption spectrum of the fourth overtone of the OH stretch in gaseous methanol,” J. Mol. Spectrosc. 103 (2), 295–299 (1984).MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    K. V. L. N. Sastry, R. M. Lees, and F. C. De Lucia, “Microwave and submillimeter-wave spectra of CH3OH,” J. Mol. Spectrosc. 103 (2), 486–494 (1984).CrossRefADSGoogle Scholar
  49. 49.
    R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55 (2), 127–130 (1985).CrossRefADSGoogle Scholar
  50. 50.
    H. Rudolph, J. Avery, and J. O. Henningsen, “Torsionvibration interaction in CH3OH,” J. Mol. Spectrosc. 117 (1), 38–45 (1986).CrossRefADSGoogle Scholar
  51. 51.
    R. M. Lees, “Far Infrared (FIR) and Infrared (IR) spectroscopy of methanol applied to FIR laser assignments,” Proc. SPIE 666, 158–170 (1986).CrossRefADSGoogle Scholar
  52. 52.
    I. Mukhopadhyay, R. M. Lees, and J. W. C. Johns, “Torsional refilling transitions in tea-pumped CH3OH FIR lasers with associated high-resolution FIR spectra,” Int. J. Infrared Millim. Waves 8 (11), 1471–1482 (1987).CrossRefADSGoogle Scholar
  53. 53.
    I. Mukhopadhyay, R. M. Lees, and J. W. C. Johns, “Confirmation of far infrared laser assignments from CH3-deformation and CH3-rocking states of optically pumped methanol,” Appl. Phys. B 47 (4), 319–324 (1988).CrossRefADSGoogle Scholar
  54. 54.
    G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm–1,” Infrared Phys. 29 (2–4), 583–606 (1989).CrossRefADSGoogle Scholar
  55. 55.
    G. Moruzzi, M. Prevedelli, K. M. Evenson, D. A. Jennings, M. D. Vanek, and M. Inguscio, “Ultrahigh resolution far-infrared spectroscopy of methanol,” Infrared Phys. 29 (2–4), 541–549 (1989).CrossRefADSGoogle Scholar
  56. 56.
    M. Inguscio, L. R. Zink, K. M. Evenson, and D. A. Jennings, “Accurate frequency of the 119 μm methanol laser from tunable far-infrared absorption spectroscopy,” IEEE J. Quant. Electron. 26 (3), 575–579 (1990).CrossRefADSGoogle Scholar
  57. 57.
    N. Carelli, N. Ioli, A. Moretti, D. Pereira, and F. Strumia, “Acoustooptic extension of the frequency tunability of cw CO2 lasers: New FIR laser emissions from CH3OH and 13CH3OH,” Int. J. Infrared Millim. Waves 12 (5), 449–471 (1991).CrossRefADSGoogle Scholar
  58. 58.
    R. H. Hunt, W. N. Shelton, W. B. Cook, O. N. Bignall, J. W. Mirick, and F. A. Flaherty, “Torsion-rotation absorption line assignments in the symmetric CH-stretch fundamental of methanol,” J. Mol. Spectrosc. 149 (1), 252–256 (1991).CrossRefADSGoogle Scholar
  59. 59.
    I. Mukhopadhyay, R. M. Lees, and J. W. C. Johns, “Assignments and predictions of far-infrared laser lines in methyl alcohol,” Opt. Commun. 80 (5–6), 425–434 (1991).CrossRefADSGoogle Scholar
  60. 60.
    T. Anderson, E. Herbst, and F. C. De Lucia, “An extension of the high-resolution millimeter- and submillimeter-wave spectrum of methanol to high angular momentum quantum numbers,” Astrophys. J. Suppl. Ser. 82, 405–444 (1992).CrossRefADSGoogle Scholar
  61. 61.
    R. R. J. Goulding, I. Mukhopadhyay, and R. M. Lees, “Infrared-infrared double resonance study of methyl alcohol,” Infrared Phys. 33 (5), 443–447 (1992).CrossRefADSGoogle Scholar
  62. 62.
    G. Moruzzi, F. Strumia, J. C. S. Moraes, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 200 and 350 cm–1: Torsional transitions and evidence for state mixings,” J. Mol. Spectrosc. 153 (1–2), 511–577 (1992).CrossRefADSGoogle Scholar
  63. 63.
    M. Hepp, I. Pak, K. M. T. Yamada, E. Herbst, and G. Winnewisser, “Diode laser study of the rotational redistribution in CH3OH during a supersonic jet expansion,” J. Mol. Spectrosc. 166 (1), 66–78 (1994).CrossRefADSGoogle Scholar
  64. 64.
    H. Odashima, F. Matsushima, K. Nagai, S. Tsunekawa, and K. Takagi, “Far-Infrared spectroscopy of methanol using a tunable coherent radiation source,” J. Mol. Spectrosc. 173 (2), 404–422 (1995).CrossRefADSGoogle Scholar
  65. 65.
    L.-H. Xu, X. Wang, T. J. Cronin, D. S. Perry, G. T. Fraser, and A. S. Pine, “Sub-Doppler infrared spectra and torsion-rotation energy manifold of methanol in the CH-stretch fundamental region,” J. Mol. Spectrosc. 185 (1), 158–172 (1997).CrossRefADSGoogle Scholar
  66. 66.
    P. Schilke, D. J. Benford, T. R. Hunter, D. C. Lis, and T. G. Philips, “A line survery of Orion-KL from 607 to 725 GHz,” Astrophys. J. Suppl. Ser. 132, 281–364 (2001).CrossRefADSGoogle Scholar
  67. 67.
    T. Y. Brooke, H. A. Weaver, G. Chin, D. Bockelee-Morvan, S. J. Kim, L.-H. Xu, “Spectroscopy of Comet Hale–Bopp in the infrared,” Icarus 166 (1), 167–187 (2003).CrossRefADSGoogle Scholar
  68. 68.
    S. Xu, J. J. Kay, and D. S. Perry, “Doppler-limited CW infrared cavity ringdown spectroscopy of the ν1+ ν3 OH + CH stretch combination band of jet-cooled methanol,” J. Mol. Spectrosc. 225 (2), 162–173 (2004).CrossRefADSGoogle Scholar
  69. 69.
    I. Mukhopadhyay, I. Ozier, and R. M. Lees, “Highresolution spectrum of the C–O stretch overtone band in methyl alcohol,” J. Chem. Phys. 93 (10), 7049–7053 (2010).CrossRefADSGoogle Scholar
  70. 70.
    D. M. Slocum, L.-H. Xu, R. H. Giles, and T. M. Goyette, “Retrieval of methanol absorption parameters at Terahertz frequencies using multispectral fitting,” J. Mol. Spectrosc. 318, 12–25 (2015).CrossRefADSGoogle Scholar
  71. 71.
    O. Votava, V. Horka-Zelenkova, V. Svoboda, J. Rakovsky, and P. Pracna, “OH-stretch overtone of methanol: empirical assignment using two temperature technique in supersonic jet,” Phys. Chem. Chem. Phys. 17, 15710–15717 (2015).CrossRefGoogle Scholar
  72. 72.
    A. Yu. Akhlestin, A. V. Kozodoev, N. A. Lavrent’ev, A. I. Privezentsev, and A. Z. Fazliev, “Knowledge bases for description of information resources in molecular spectroscopy. 4. “Molecular Spectroscopy” information system software,” Electon. Biblioteki 15 (3) (2012). http://www.elbib.ru/index.phtml?page-elbib/rus/journal/2012/part3/AKLPF.Google Scholar
  73. 73.
    A. Yu. Akhlestin, N. A. Lavrent’ev, A. I. Privezentsev, and A. Z. Fazliev, “Knowledge bases for description of information resources in molecular spectroscopy. 5. Exper data quality,” Electon. Biblioteki 16 (4) (2013). http://www.elbib.ru/index.phtml?page-elbib/rus/journal/2013/part4/AKLPF.Google Scholar
  74. 74.
    G. Moruzzi, F. Strumia, P. Carnesecchi, B. Carli, and M. Carlotti, “High resolution spectrum of CH3OH between 8 and 100 cm–1,” Infrared Phys. 29 (1), 47–86 (1989).CrossRefADSGoogle Scholar
  75. 75.
    G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm–1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144 (1), 139–200 (1990).CrossRefADSGoogle Scholar
  76. 76.
    J. C. Pearson, B. J. Drouin, S. Yu, and H. Gupta, “Microwave spectroscopy of methanol between 2.48 and 2.77 THz,” J. Opt. Soc. Amer., B 28, 2549–2577 (2011).CrossRefADSGoogle Scholar
  77. 77.
    R. M. Lees, F. J. Lovas, W. H. Kirchhoff, and D. R. Johnson, “Microwave spectra of molecules of astrophysical interest: III. Methanol,” J. Phys. Chem. Ref. Data 2 (2), 205–214 (1973).CrossRefADSGoogle Scholar
  78. 78.
    L. Gaines, K. H. Casleton, and S. G. Kukolich, “Beam maser measurements of CH3OH rotational transitions,” Astrophys. J. 191 (7), L99–L100 (1974).CrossRefADSGoogle Scholar
  79. 79.
    H. M. Pickett, E. A. Cohen, D. E. Brinza, and M. M. Schaefer, “The submillimeter wavelength spectrum of methanol,” Int. J. Infrared Millimeter Waves 89(2), 542–547 (1981).Google Scholar
  80. 80.
    G. Moruzzi, F. Strumia, C. Bonetti, B. Carli, F. Mencaraglia, M. Carlotti, G. Di Lonardo, and A. Trombetti, “The Fourier spectrum of CH3OH: The region between 8 and 40 cm–1,” J. Mol. Spectrosc. 105 (1), 24–52 (1984).CrossRefADSGoogle Scholar
  81. 81.
    L. Coudert and A. Valentin, “The rotation-torsion energy levels of the methanol molecule 12CH3 16OH above the triple potential barrier,” J. Mol. Spectrosc. 122 (2), 390–407 (1987).CrossRefADSGoogle Scholar
  82. 82.
    L. R. Zink, K. M. Evenson, D. A. Jennings, G. Moruzzi, and M. Inguscio, “Frequency measurement of the K = 6 asymmetry splittings in CH3OH,” J. Mol. Spectrosc. 127 (1), 44–50 (1988).CrossRefADSGoogle Scholar
  83. 83.
    F. C. De Lucia, E. Herbst, and T. Anderson, “The analysis of the rotational spectrum of methanol to microwave accuracy,” J. Mol. Spectrosc. 134 (2), 395–411 (1989).CrossRefADSGoogle Scholar
  84. 84.
    M. Dang-Nhu, G. Blanquet, J. Walrand, M. Allegrini, and G. Moruzzi, “Intensities of the CO stretch band of CH3OH at 9.7 μm,” J. Mol. Spectrosc. 141 (2), 348–350 (1990).CrossRefADSGoogle Scholar
  85. 85.
    I. Mukhopadhyay, R. M. Lees, and K. V. L. N. Sastry, “Detection of weak microwave and millimeter wave transitions in the C–O stretch state of methyl alcohol,” Infrared Phys. 30 (3), 291–293 (1990).CrossRefADSGoogle Scholar
  86. 86.
    I. Mukhopadhyay, I. Ozier, and R. M. Lees, “Highresolution spectrum of the C–O stretch overtone band in methyl alcohol,” J. Chem. Phys. 93 (10), 7049–7053 (1990).CrossRefADSGoogle Scholar
  87. 87.
    M. Dang-Nhu, G. Blanquet, and J. Walrand, “Intensities of methanol spectra around 12.5 μm,” J. Mol. Spectrosc. 146 (2), 524–526 (1991).CrossRefADSGoogle Scholar
  88. 88.
    O. I. Baskakov and M. A. O. Pashaev, “Microwave and submillimeter-wave rotational spectrum of methyl alcohol in the ground torsional state,” J. Mol. Spectrosc. 151 (2), 282–291 (1992).CrossRefADSGoogle Scholar
  89. 89.
    F. Matsushima, K. M. Evenson, and L. R. Zink, “Absolute frequency measurements of methanol from 1.5 to 6.5 THz,” J. Mol. Spectrosc. 164 (2), 517–530 (1994).CrossRefADSGoogle Scholar
  90. 90.
    G. Winnewisser and E. Herbst, “The high-resolution rotational-torsional spectrum of methanol from 0.55 to 1.2 THz,” J. Mol. Spectrosc. 174 (1), 253–269 (1995).CrossRefADSGoogle Scholar
  91. 91.
    S. M. Breckenridge and S. G. Kukolich, “Precise laboratory measurements of methanol rotational transition frequencies in the 5 to 13 GHz region,” Astrophys. J. 438 (1), 504–505 (1995).CrossRefADSGoogle Scholar
  92. 92.
    L. H. Xu and J. T. Hougen, “Global fit of torsionalrotational transitions in the ground and first excited torsional states of methanol,” J. Mol. Spectrosc. 173 (2), 540–551 (1995).CrossRefADSGoogle Scholar
  93. 93.
    L. H. Xu and J. T. Hougen, “Global fit of rotational transitions in the ground torsional state of methanol,” J. Mol. Spectrosc. 169 (2), 396–409 (1995).CrossRefADSGoogle Scholar
  94. 94.
    Z.-D. Sun, F. Matsushima, S. Tsunekawa, and K. Takagi, “Sub-Doppler spectroscopy of the CO stretching fundamental band of methanol by use of microwave sidebands of CO2 laser lines,” J. Opt. Soc. Amer., B 17 (12), 2068–2080 (2000).CrossRefADSGoogle Scholar
  95. 95.
    D. Rueda, O. V. Boyarkin, T. R. Rizzo, I. Mukhopadhyay, and D. S. Perry, “Torsion-rotation analysis of OH stretch overtone-torsion combination bands in methanol,” J. Chem. Phys. 116 (1), 91–100 (2002).CrossRefADSGoogle Scholar
  96. 96.
    R. M. Lees, L.-H. Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, “Rotation-torsion-vibration term-value mapping for CH3OH: Torsion-mediated doorways and corridors for intermode population transfer,” J. Mol. Spectrosc. 243 (2), 168–181 (2007).CrossRefADSGoogle Scholar
  97. 97.
    C. S. Brauer, K. Sung, J. C. Pearson, L. R. Brown, L.-H. Xu, “Empirical line intensities of methanol in the 300–500 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 113 (2), 128–139 (2012).CrossRefADSGoogle Scholar
  98. 98.
    D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: System description,” in Proc. 3rd Int. Joint Conf. on Automated Reasoning (IJCAR’06), LNCS (Springer, 2006), p. 292–297.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. Yu. Akhlestin
    • 1
  • S. S. Voronina
    • 1
  • A. I. Privezentsev
    • 1
  • O. B. Rodimova
    • 1
  • A. Z. Fazliev
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations