Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 134–143 | Cite as

Information system for molecular spectroscopy: 6—systematization of spectral data on deutero-substituted isotopologues of the hydrogen sulfide molecule

  • A. Yu. Akhlestin
  • S. S. Voronina
  • O. V. Naumenko
  • E. R. Polovtseva
  • A. Z. Fazliev
Spectroscopy of Ambient Medium

Abstract

Properties of data published on the spectral line parameters for deutero-substituted isotopologues of the hydrogen sulfide molecule (HDS, HD34S, D2S, and D2 34S) are described. Most properties follow from the results of vacuum wavenumber quality analysis. Two applications used for the data quality analysis in W@DIS information system are described. The results of computer-based data quality analysis of vacuum wavenumbers are completed by the expert evaluation of the quality of the same data set. The rotation-vibrational transitions and energy levels of deutero-substituted isotopologues of the hydrogen sulfide molecule are imported into the database; their properties are collected in the knowledge base and available in the W@DIS information system (http://wadis.saga.iao.ru/).

Keywords

deutero-substituted isotopologues of hydrogen sulfide molecule W@DIS information system rotation-vibrational transitions energy levels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Vastel, T. G. Phillips, C. Ceccarelli, and J. Pearson, “First detection of doubly deuterated hydrogen sulfide,” Astrophys. J. 593 (2), L97–L100 (2003).CrossRefADSGoogle Scholar
  2. 2.
    E. R. Polovtseva, N. A. Lavrentiev, S. S. Voronina, O. V. Naumenko, and A. Z. Fazliev, “Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule,” Atmos. Ocean. Opt. 25 (2), 157–165 (2012).CrossRefGoogle Scholar
  3. 3.
    S. S. Voronina, O. V. Naumenko, E. R. Polovtseva, and A. Z. Fazliev, “Systematization of published spectral data on deuterated isotopologues of hydrogen sulfide molecule,” Proc. SPIE 9292, 92920 (2014).ADSGoogle Scholar
  4. 4.
    http://www.elbib.ru/index.phtml?page=elbib/rus/journal/2013/part4/AKLPF.Google Scholar
  5. 5.
    N. A. Lavrentiev, M. M. Makagon, and A. Z. Fazliev, “Comparison of the HITRAN and GEISA spectral databases taking into account the restriction on publication of spectral data,” Atmos. Ocean. Opt. 24 (5), 436–451 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Fazliev, A. Privezentsev, D. Tsarkov, and J. Tennyson, “Ontology-based content trust support of expert information resources in quantitative spectroscopy,” in Knowledge Engineering and the Semantic Web, Communications in Computer and Information Science, Ed. by P. Klinov and D. Mouromtsev (Springer, Berlin, Heidelberg, 2013).Google Scholar
  7. 7.
    Z. V. Apanovich, P. S. Vinokurov, A. Yu. Akhlestin, A. I. Privezentsev, and A. Z. Fazliev, “Digital library of scientific papers on quantitative spectroscopy,” in Proc. of the 14th All-Russian Scientific Conference “Digital Libraries: Advanced Methods and Technologies, Digital Collections—RCDL'2012" (Pereslavl, 2012), p. 53–59 [in Russian].Google Scholar
  8. 8.
    http://elbib.ru/index.phtml?page=elbib/rus/journal/2012/part2Google Scholar
  9. 9.
    http://elbib.ru/index.phtml?page=elbib/rus/journal/2012/part3/AKLPFGoogle Scholar
  10. 10.
    A. D. Bykov, A. V. Kozodoev, A. I. Privezentsev, L. N. Sinitsa, M. V. Tonkov, N. N. Filippov, A. Z. Fazliev, and M. Yu. Tretyakov, “Distributed information system on molecular spectroscopy,” Proc. SPIE 6580, P. 65800W (2006).Google Scholar
  11. 11.
    J. Lamouroux, L. Regalia-Jarlot, Vl. G. Tyuterev, and X. Thomas, P. Von der Heyden, S. A. Tashkun, and Yu. Borkov, “Measurements of line intensities and determination of transition moment parameters from experimental data for the ν1 and ν3 bands of D2 32S,” J. Mol. Spectrosc. 250 (2), 117–125 (2008).CrossRefADSGoogle Scholar
  12. 12.
    R. E. Miller, G. E. Leroi, and T. M. Hard, “Analysis of the pure rotational absorption spectra of hydrogen sulfide and deuterium sulfide,” J. Chem. Phys. 50 (2), 677–684 (1969).CrossRefADSGoogle Scholar
  13. 13.
    C. Camy-Peyret, J.-M. Flaud, L. Lechuga-Fossat, and J. W. C. Johns, “The far-infrared spectrum of deuterated hydrogen sulfide: The ground state rotational constants of D2 32S, D2 34S, HD32S, and HD34S,” J. Mol. Spectrosc. 109 (2), 300–333 (1985).CrossRefADSGoogle Scholar
  14. 14.
    Toshiaki Osaka and Shin-ichi Takahashi, “Far infrared absorption spectra of H2S and D2S,” Int. J. Quant. Chem. 25, 1654–1663 (1968).Google Scholar
  15. 15.
    C. A. Burrus, personal communication, 1970.Google Scholar
  16. 16.
    F. C. De Lucia and J. W. Cederberg, “Hyperfine spectra and molecular of D2S,” J. Chem. Phys. 40 (1), 52–58 (1971).Google Scholar
  17. 17.
    R. L. Cook, F. C. De Lucia, and P. Helminger, “Millimeter and submillimeter wave rotational spectrum and centrifugal distortion effects of D2S,” J. Mol. Spectrosc. 41 (1), 123–136 (1972).CrossRefADSGoogle Scholar
  18. 18.
    C. Camy-Peyret, J.-M. Flaud, A. N’Gom, and J.W. C. Johns, “The three fundamental bands ν2, ν1 and ν3 of D2 32S and the ν2 band of D2 34S,” Mol. Phys. 65 (3), 649–657 (1988).CrossRefADSGoogle Scholar
  19. 19.
    O. N. Ulenikov, R. N. Tolchenov, E. N. Melekhina, M. Koivusaari, S. Alanko, and R. Anttila, “High resolution study of deuterated hydrogen sulfide in the region 2400–3000 cm–1,” J. Mol. Spectrosc. 170 (2), 397–416 (1995).CrossRefADSGoogle Scholar
  20. 20.
    A.-W. Liu, O. N. Ulenikov, G. A. Onopenko, O. V. Gromova, E. S. Bekhtereva, L. Wan, L.-Y. Hao, S.-M. Hu, and J.-M. Flaud, “Global fit of the highresolution infrared spectrum of D2S,” J. Mol. Spectrosc. 238 (1), 11–28 (2006).CrossRefADSGoogle Scholar
  21. 21.
    G. A. Onopenko, “High-resolution spectrum of the first triad of D2 32S interacting states,” Rus. Phys. J. 52 (2), 113–118 (2009).CrossRefGoogle Scholar
  22. 22.
    R. E. Hillger and M. W. P. Strandberg, “Centrifugal distortion in asymmetric molecules. II. HDS,” Phys. Rev. 83 (3), 575–581 (1951).CrossRefADSGoogle Scholar
  23. 23.
    P. Helminger, R. L. Cook, and F. C. De Lucia, “Microwave spectrum and centrifugal distortion effects of HDS,” J. Mol. Spectrosc. 40 (1), 125–136 (1971).CrossRefADSGoogle Scholar
  24. 24.
    G. Steenbeckeliers, personal communication, 1973.Google Scholar
  25. 25.
    O. N. Ulenikov, R. N. Tolchenov, M. Koivusaari, S. Alanko, and R. Antilla, “Study of the fine rotational structure of the ν2 band of HDS,” J. Mol. Spectrosc. 170 (1), 1–9 (1995).CrossRefADSGoogle Scholar
  26. 26.
    O. N. Ulenikov, E. A. Ditenberg, I. M. Olekhnovitch, S. Alanko, M. Koivusaari, and R. Anttila, “Isotope substitution in near local mode molecules: Bending overtones nν2 (n = 2, 3) of the HDS molecule,” J. Mol. Spectrosc. 191 (2), 239–247 (1998).CrossRefADSGoogle Scholar
  27. 27.
    O. N. Ulenikov, G. A. Onopenko, I. M. Olekhnovitch, S. Alanko, V.-M. Horneman, M. Koivusaari, and R. Anttila, “High-resolution Fourier transform spectra of HDS in the regions of the bands ν1 and 2ν12 + ν3,” J. Mol. Spectrosc. 189 (1), 74–82 (1998).CrossRefADSGoogle Scholar
  28. 28.
    A.-W. Liu, B. Gao, G.-S. Cheng, F. Qi, and S.-M. Hu, “High-resolution rotational analysis of HDS: 2ν3, ν2 + 2ν3, 3ν3, and ν2 + 3ν3 bands,” J. Mol. Spectrosc. 232 (2), 279–290 (2005).CrossRefADSGoogle Scholar
  29. 29.
    O. N. Ulenikov, A.-W. Liu, E. S. Bekhtereva, G. A. Onopenko, O. V. Gromova, L. Wan, S.-M. Hu, and J.-M. Flaud, “Joint ro-vibrational analysis of the HDS high resolution infrared data,” J. Mol. Spectrosc. 240 (1), 32–44 (2006).CrossRefADSGoogle Scholar
  30. 30.
    T. Furtenbacher, A. Császár, and J. Tennyson, “MARVEL: measured active rotational-vibrational energy levels,” J. Mol. Spectrosc. 245 (2), 115–125 (2007).CrossRefADSGoogle Scholar
  31. 31.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O.L.Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, L. Daumont, T. Furtenbacher, A. Z. Fazliev, I. E. Gordon, S. N. Mikhailenko, and S. V. Shirin, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I. Energy levels and transition wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. Radiat. Transfer 110 (9–10), 573–596 (2009).CrossRefADSGoogle Scholar
  32. 32.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S.-M. Hu, S. N. Mikhailenko, and B. A. Voronin, “IUPAC critical evaluation of the rotational- vibrational spectra of water vapor. Part II. Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2160–2184 (2010).CrossRefADSGoogle Scholar
  33. 33.
    J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Császár, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, A. Derzia, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, L. Lodi, and I. Mizus, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).CrossRefADSGoogle Scholar
  34. 34.
    J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. G. Császár, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, N. Denes, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, S.-M. Hu, T. Szidarovszky, and I. A. Vasilenko, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D2 16O, D2 17O, and D2 18O,” J. Quant. Spectrosc. Radiat. Transfer 142, 93–108 (2014).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. Yu. Akhlestin
    • 1
  • S. S. Voronina
    • 1
  • O. V. Naumenko
    • 1
  • E. R. Polovtseva
    • 1
  • A. Z. Fazliev
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations