Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 2, pp 209–215 | Cite as

Variations in gas components and total pressure in stem and root disc wood of conifer species

  • B. G. Ageev
  • A. N. Gruzdev
  • V. A. Sapozhnikova
Radiation and Biosphere

Abstract

The content of CO2 and H2O in vacuum-extracted tree-ring wood of stem and root discs of certain conifer species was measured. Annual distributions of these gas components were found to exhibit cyclic behavior. Moreover, distinct cyclicity was also revealed in interannual variations of the total pressure of the vacuum-extracted tree-ring gas samples. It may be safely assumed that diffusion of stem CO2 into the atmosphere will show the same periodic variability. Two hypotheses about the origin of the cyclicity in the treering CO2 distributions are examined.

Keywords

conifers cyclicity CO2 latewood pine root 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. T. Trotter, N. S. Cobb, and T. G. Whitham, “Herbivory, plant resistance, and climate in the tree ring record: Interactions distort climatic reconstructions,” Proc. Nat. Acad. Sci. U.S.A. 99 (15), 10197–10202 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    V. V. Zuev, D. A. Savchuk, B. G. Ageev, S. L. Bondarenko, and V. A. Sapozhnikova, “New dendrochronological parameter–the result of optoacoustic measurements of CO2 concentration in the annual rings of trees,” Atmos. Ocean. Opt. 19 (5), 417–420 (2006).Google Scholar
  3. 3.
    V. A. Sapozhnikova, A. N. Gruzdev, B. G. Ageev, Yu. N. Ponomarev, and D. A. Savchuk, “A correlation between SO2 and N2O content in tree rings of Siberian Stone Pine and variations in meteorological parameters,” Dokl. Akad. Nauk 450 (5), 592–598 (2013).Google Scholar
  4. 4.
    B. G. Ageev, A. N. Gruzdev, and V. A. Sapozhnikova, “The special features of tree ring gas chronologies,” Proc. SPIE—Int. Soc. Opt. Eng. 9680 (12) (2015).Google Scholar
  5. 5.
    B. G. Ageev, A. P. Zotikova, N. L. Padalko, Yu. N. Ponomarev, D. A. Savchuk, V. A. Sapozhnikova, and E. V. Chernikov, “Variation of H2O, SO2 and SO2 isotope composition in tree rings of Siberian Stone Pine,” Atmos. Oceanic Opt. 24 (4), 397–402 (2011).CrossRefGoogle Scholar
  6. 6.
    M. L. Pruyn, B. L. Gartner, and M. E. Harmon, “Within-steam variation of respiration Pseudotsuda Menziensii (Doglas Fir) trees,” New Phytol. 154 (2), 359–372 (2002).CrossRefGoogle Scholar
  7. 7.
    R. O. Teskey, A. Saveyn, K. Steppe, and M. A. McGuire, “Origin, fate and significance of CO2 in tree stems,” New Phytol. 177 (1), 17–32 (2008).Google Scholar
  8. 8.
    S. E. Trumbore, A. Angert, N. Kunert, J. Muhr, J. Q. Chambers, “What’s the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes,” New Phytol. 197 (2), 353–355 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Bloemen, M. A. McGuire, D. P. Aubrey, R. O. Teskey, and K. Steppe, “Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees,” New Phytol. 197 (2), 555–565 (2013).CrossRefGoogle Scholar
  10. 10.
    D. P. Aubrey and R. O. Teskey, “Root-derived CO2 efflux via xylem stream rivals Soil CO2 efflux,” New Phytol. 184 (1), 35–40 (2009).CrossRefGoogle Scholar
  11. 11.
    E. T. Engelund, L. G. Thygesen, S. Svensson, and C. A. S. Hill, “A critical discussion of the physics of wood-water interactions,” Wood Sci. Technol. 47 (1), 141–161 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Ageev, Yu. Ponomarev, V. Sapozhnikova, and D. Savchuk, “A laser photoacoustic analysis of residual CO2 and H2O in larch stems,” Biosensors 5 (1), 1–12 (2015).CrossRefGoogle Scholar
  13. 13.
    Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland, 2014).Google Scholar
  14. 14.
    V. Bellassen and S. Luyssaert, “Managing forests in uncertain times,” Nature (Gr. Brit.) 506 (7487), 153–155 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Rubino, D. Etheridge, C. Trudinger, and R. Francey, “A revised 1000 year atmospheric δ13C–CO2 record from law dome and south pole, Antarctica,” J. Geophys. Res. 118 (15), 8482–8499 (2013).Google Scholar
  16. 16.
    S. Stuchebrov, A. Batranin, S. Bondarenko, and V. Sapozhnikova, “X-ray computed tomography in dendrochronology studies,” in Abstr. of the 9th Int. Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications (IRRMA-9), Valencia (Spain), 6–11 July 2014, P. 256.Google Scholar
  17. 17.
    O. N. Solomina, E. A. Dolgova, and O. E. Maksimova. http://nestorbook.ru/uCat/item/693.Google Scholar
  18. 18.
    A. N. Gruzdev, H. Schmidt, and G. P. Brasseur, “The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a threedimensional chemistry-climate model,” Atmos. Chem. Phys. 9 (2), 595–614 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    A. N. Gruzdev and V. A. Bezverkhny, “Two regimes of the quasi-biennial oscillation in the equatorial stratospheric wind,” J. Geophys. Res., D 105 (24), 29435–29443 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    B. G. Ageev, A. N. Gruzdev, S. L. Bondarenko, and V. A. Sapozhnikova, “Long-term H2O and CO2 trends in conifer disc tree rings and meteorological parameters,” J. Life Sci. (Valley Cottage, NY, U. S.), No. 9, 1002–1008 (2013).Google Scholar
  21. 21.
    J.-C. Domec and B. L. Gartner, “How do water transport and water storage differ in coniferous earlywood and latewood?,” J. Exp. Bot. 53 (379), 2369–2379 (2002).CrossRefGoogle Scholar
  22. 22.
    Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, D. Hayes, “A large and persistent carbon sink in the world’s forests,” Science 333 (6045), 988–993 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    D. Schimel, B. B. Stephens, and J. B. Fisher, “Effect of increasing CO2 on the terrestrial carbon cycle,” Proc. Natl. Acad. Sci. USA 112 (2), 436–441 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    V. N. Aref’ev, N. E. Kamenogradskii, F. V. Kashin, and A. V. Shilkin, “Background component of carbon dioxide concentration in the near-surface air,” Izv., Atmos. Ocean. Phys. 50 (6), 576–582 (2014).CrossRefGoogle Scholar
  25. 25.
    S. G. Shiyatov and V. S. Mazepa, Dendrochronology of the Tree Line in the Urals (Nauka, Moscow, 1986) [in Russian].Google Scholar
  26. 26.
    A. V. Glyzin, T. B. Razmakhnina, and V. M. Korsunov, “Dendrochronological studies in the forest-steppe contact zone as a source of information about its time course,” Sib. Ekol. Zh 12 (1), 79–83 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • B. G. Ageev
    • 1
  • A. N. Gruzdev
    • 2
  • V. A. Sapozhnikova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations