Electrophoretically Deposited Bismuth Iron Oxide Nanoparticles Film for Supercapacitor Application

Abstract

Bismuth iron oxide (BFO) nanoparticles film prepared by electrophoretic deposition (EPD) process has been explored for supercapacitor application. EPD process has several benefits compared to other techniques such as vacuum free, controllability over nanofilms and suitable method to prepare electrodes. The structure of the as-deposited film was characterized using X-ray diffraction and high-resolution transmission electron microscopy. The morphology of the as-deposited BFO nanoparticles film was examined with scanning electron microscopy. Cyclic voltammetry and constant current charging/discharging methods were employed to study the electrochemical properties of BFO nanoparticles films. The BFO nanoparticles film exhibited a specific capacitance of 7.4 mF/cm2 determined at a scan rate of 10 mV/s.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Kotz, R. and Carlen, M., Principles and applications of electrochemical capacitors, Electrochim. Acta, 2000, vol. 45, p. 2483.

    CAS  Article  Google Scholar 

  2. 2

    Tie, S.F. and Wei, C., A review of energy sources and energy management system in electric vehicles, Renewable Sustainable Energy Rev., 2013, vol. 20, p. 82.

    Article  Google Scholar 

  3. 3

    Hota, M.K., Jiang, Q., Mashraei, Y., Salama, K.N., and Alshareef, H.N., Fractal electrochemical microsupercapacitors, Adv. Electron., 2017, vol. 3, p. 1700185.

    Article  Google Scholar 

  4. 4

    Soam, A., Kumar, R., Mahender, C., Singh, M., Thatoi, D., and Dusane, R.O., Development of paper-based flexible supercapacitor: bismuth ferrite/graphene nanocomposite as an active electrode material, J. Alloys Compd., 2020, vol. 813, p. 152145.

    CAS  Article  Google Scholar 

  5. 5

    Kumar, R., Soam, A., Dusane, R.O., and Bhargava, P., Sucrose derived carbon coated silicon nanowires for supercapacitor application, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, p. 1947.

    CAS  Google Scholar 

  6. 6

    Lokhande, C.D., Dubal, D.P., and Joo, O., Metal oxide thin film based supercapacitors, Curr. Appl. Phys., 2017, vol. 11, p. 255.

    Article  Google Scholar 

  7. 7

    Liu, Y., Hu, Z., Xu, K., Zheng, X., and Gao, Q., Surface modification and performance of activated carbon electrode material, Acta Phys.-Chim. Sin., 2008, vol. 24, p. 1143.

    CAS  Article  Google Scholar 

  8. 8

    Yusin, S.I. and Karunina, O.V., Synthesis and characterization of supercapacitor electrode materials based on carbon fiber materials and metal oxyhydroxides, Inorg. Mater.: Appl. Res., 2018, vol. 9, p. 954.

    Article  Google Scholar 

  9. 9

    Yang, J., Liu, Y., Chen, X., Hu, Z., and Zhao, G., Carbon electrode material with high densities of energy and power, Acta Phys.-Chim. Sin., 2008, vol. 24, p. 13.

    CAS  Article  Google Scholar 

  10. 10

    Liu, W., Lu, C., Wang, X., Tay, R.Y., and Tay, B.K., High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film, ACS Nano, 2015, vol. 9, p. 1528.

    CAS  Article  Google Scholar 

  11. 11

    Soam, A., Parida, K., Kumar, R., Kavle, P., and Dusane, R., Silicon–MnO2 core–shell nanowires as electrodes for micro-supercapacitor application, Ceram. Int., 2019, vol. 45, p. 18914.

    CAS  Article  Google Scholar 

  12. 12

    Kumar, R., Singh, B.K., Soam, A., Parida, S., and Bhargava, P., In-situ carbon coated manganese oxide nanorodes (ISCC-MnO2NRs) as an electrode material for supercapacitors, Diamond Carbon Relat. Mater., 2019, vol. 94, p. 110.

    CAS  Article  Google Scholar 

  13. 13

    Ghanashyam, G. and Jeong, H.K., Thermally reduced graphite oxide-titanium dioxide composites for supercapacitors, Chem. Phys. Lett., 2018, vol. 706, p. 421.

    CAS  Article  Google Scholar 

  14. 14

    Khomenko, V., Frackowiak, E., and Be, F., Performance of manganese oxide CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc., 2005, vol. 152, p. 229.

    Google Scholar 

  15. 15

    Sarkar, A., Singh, A.K., Sarkar, D., Khan, G.G., and Mandal, K., Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion, ACS Sust. Chem. Eng., 2015, vol. 3, p. 2254.

    CAS  Article  Google Scholar 

  16. 16

    Lokhande, C., Gujar, T., Mane, R.S., and Han, S.H., Electrochemical supercapacitor application of pervoskite thin films, Electrochem. Commun., 2007, vol. 9, p. 1805.

    CAS  Article  Google Scholar 

  17. 17

    Jadhav, V.V., Zate, M.K., Liu, S., Naushad, M., Mane, R.S., Hui, K.N., and Han, S.H., Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application, Appl. Nanosci., 2016, vol. 6, p. 511.

    CAS  Article  Google Scholar 

  18. 18

    Nayak, S., Soam, A., Nanda, J., Mahender, C., Singh, M., Mohapatra, D., and Kumar, R., Sol-gel synthesized BiFeO3-graphene nanocomposite as efficient electrode for supercapacitor application, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, p. 9361.

    CAS  Google Scholar 

  19. 19

    Di, L., Yang, H., Xian, T., and Chen, X., Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization, Materials, 2017, vol. 10, p. 1118.

    Article  Google Scholar 

  20. 20

    Ponzoni, C., Rosa, R., Cannio, M., Buscaglia, V., Finocchio, E., Nanni, P., and Leonelli, C., Electrophoretic deposition of multiferroic BiFeO3 sub-micrometric particles from stabilized suspensions, J. Europ. Ceram. Soc., 2013, vol. 33, p. 1325.

    CAS  Article  Google Scholar 

  21. 21

    Salimkhani, H., Palmeh, P., Khiabani, A. B., Hashemi, E., Matinpour, S., Salimkhani, H., and Shahedi, M., Electrophoretic deposition of spherical carbonyl iron particles on carbon fibers as a microwave absorbent composite, Surf. Interfaces, 2016, vol. 5, p. 1.

    CAS  Article  Google Scholar 

  22. 22

    Wu, Y., Wan, J., Huang, C., Weng, Y., Zhao, S., Liu, J., and Wang, G., Strong magnetoelectric coupling in multiferroic BiFeO3–Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition, Appl. Phys. Lett., 2008, vol. 93, p. 192915.

    Article  Google Scholar 

  23. 23

    Zhang, N., Chen, D., Niu, F., Wang, S., Qin, L., and Huang, Y., Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight, Sci. Rep., 2016, vol. 6, p. 26467.

    CAS  Article  Google Scholar 

  24. 24

    Pell, W.G. and Conway, B.E., Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, J. Power Sources, 2001, vol. 96, p. 57.

    CAS  Article  Google Scholar 

  25. 25

    Pell, W.G., Conway, B.E., and Marincic, N., Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations, J. Electroanal. Chem., 2000, vol. 491, p. 9.

    CAS  Article  Google Scholar 

  26. 26

    Levie, R.D., On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochim. Acta, 1963, vol. 8, p. 751.

    Article  Google Scholar 

  27. 27

    Sarma, B., Jurovitzki, A.L., Smith, Y.R., Mohanty, S.K., and Misra, M., Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode, ACS Appl. Mater. Interface, 2013, vol. 5, p. 1688.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Prof. V.S. Raja, Dept. of ME and MS, IIT Bombay, for providing the electrochemical characterization facility. I also acknowledge the University of Rajasthan for SEM characterization. Department of physics, Siksha O. Anusandhan, Deemed to be University, Bhubaneswar is also acknowledged for providing the BFO nanopowder and electrode preparation facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ankur Soam.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ankur Soam, Kumar, R. & Singh, M. Electrophoretically Deposited Bismuth Iron Oxide Nanoparticles Film for Supercapacitor Application. Russ J Electrochem 56, 1037–1042 (2020). https://doi.org/10.1134/S1023193520120241

Download citation

Keywords:

  • bismuth iron oxide
  • electrophoretic deposition
  • supercapacitor
  • cyclic voltammetry