Voltammetric Study of the Electrocatalytic Oxidation of L-Sodium Lactate by 4-Acetamido-TEMPO


The use of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-acetamido-TEMPO (ACT) for electrochemical oxidation of L-sodium lactate (SL) was comparatively investigated by cyclic voltammetry, and it was proved that ACT is more effective as a mediator in these electrocatalytic reactions. A comprehensive investigation of electrooxidation performance of ACT toward SL through investigating the effect of pH, concentration of SL, the sensitivity of SL using this electroanalytical method was calculated to be 2.78 μA cm–2/mM, the catalytic rate constant was determined to be 51.7 L/(mol s) by using chronoamperometry.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Ichai, C., Orban, J.C., and Fontaine, E., Sodium lactate for fluid resuscitation: thepreferred solution for the coming decades?, Crit. Care, 2014, vol. 18, p. 163.

    Article  Google Scholar 

  2. 2

    Nalos, M., Leverve, X., Huang, S., Weisbrodt, L., Parkin, R., Seppelt, I., Ting, I., and Mclean, A., Half-molar sodium lactae infusion improves caradiac performance in acute heart failure: a pilot randomised controlled clinical trial, Crit. Care, 2014, vol. 18, p. R48.

    Article  Google Scholar 

  3. 3

    Duburcq, T., Durand, A., Dessein, A.F., Vamecq, J., Vienne, J.C., et al., Comparison of fluid balance and hemodynamic and metabolic effects of sodium lactate versus sodium bicarbonate versus 0.9%NaCl in porcine endotoxic shock: a randomized, open-label, controlled study, Crit. Care, 2017, vol. 19, p. 113.

    Article  Google Scholar 

  4. 4

    Martinez, L., Cilla, I., Beltran, J.A., and Roncales, P., Combined effect of modified atmosphere packaging and addition of rosemary (rosmarinus officinalis), ascorbic acid, red beet root (beta vulgaris), and sodium lactate and their mixtures on the stability of fresh pork sausages, J. Agric. Food Chem., 2006, vol. 54, p. 4674.

    CAS  Article  Google Scholar 

  5. 5

    Ilhak, O.I. and Guran, H., Combined antimicrobial effect of thymol and sodium lactate against listeria monocytogenes and salmonella typhimurium in fish patty, J. Food Safety, 2014, vol. 34, p. 211.

    CAS  Article  Google Scholar 

  6. 6

    Mohan, C.O., Ravishankar, C.N., Kumar, K.A., and Gopal, T.K., Biogenic amines and nucleotide breakdown products of sodium acetate, sodium lactate, and sodium citrate treated seer fish (Scomberomorus commerson) during iced storage, J. Food Safety, 2019, vol. 39, p. 12633.

    Article  Google Scholar 

  7. 7

    Zhang, L., Wang, H., Jin, C., Zhang, R., Li, L., Li, X., and Jiang, S., Sodium lactate loaded chitosan-polyvinyl alcohol/monotmorillonite composite film towards active food packaging, Innov. Food Sci. Emerg., 2017, vol. 42, p. 101.

    CAS  Article  Google Scholar 

  8. 8

    Juneja, V.K., Delayed clostridium perfringens growth from a spore inocula by sodium lactate in sous-vide chicken products, Food Microbio, 2006, vol. 23, p. 105.

    CAS  Article  Google Scholar 

  9. 9

    Dusselier, M., Wouwe, P.V., Dewaele, A., Makshina, E., and Sels, B.F., Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy Environ. Sci., 2013, vol. 6, p. 1415.

    CAS  Article  Google Scholar 

  10. 10

    Zhang, K., Ren, S., Hou, Y., Wu, W., and Bao, Y., Sodium lactate aqueous solution, a green and stable absorbent for desulfurization of flue gas, Ind. Eng. Chem. Res., 2017, vol. 56, p. 13844.

    CAS  Article  Google Scholar 

  11. 11

    Wu, Z., Hou, Y., Wu, W., Ren, S., and Zhang, K., Efficient removal of sulfuric acid from soddium lactate aqueous solution based on the common-ion effect for the absorption of SO2 of flue gas, Energ. Fuels, 2019, vol. 33, p. 4395.

    CAS  Article  Google Scholar 

  12. 12

    Rathee, K., Dhull, V., Duhll, R., and Singh, S., Biosensors based on electrochemical lactate detection: a comprehensive review, Biochem. Biophys. Rep., 2016, vol. 5, p. 35.

    PubMed  Google Scholar 

  13. 13

    Kucherenko, I.S., Topolnikova, Y.V., and Soldatkin, O.O., Advances in the biosensors for lactate andpyruvate detection for medical applications: a review, TrAC, Trends Anal. Chem., 2019, vol. 110, p. 160.

    CAS  Article  Google Scholar 

  14. 14

    Cunhua-Silva, H., Pires, F., Dias-Cabral, A.C., and Arcos-Martinez, M.J., Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependentmechanism, Colloids Surf. B: Biointerfaces, 2019, vol. 184, p. 110490.

    Article  Google Scholar 

  15. 15

    Nutting, J.E., Rafiee, M., and Stahl, S.S., Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions, Chem. Rev., 2018, vol. 118, p. 4834.

    CAS  Article  Google Scholar 

  16. 16

    Li, Y., Wen, X.L., and Liu, Z.L., Electrocatalytic oxidation of vitamin B6 by 4-hydroxy-2, 2, 6, 6-tetramethyl piperidine-N-oxy, Chin. J. Chem., 2004, vol. 22, p. 1356.

    CAS  Article  Google Scholar 

  17. 17

    Wen, X.L., Jia, Y.H., Yang, L., and Liu, Z.L., Electrocatalytic oxidation of L-tyrosine by a nitroxide, Talanta, 2001, vol. 53, p. 1031.

    CAS  Article  Google Scholar 

  18. 18

    Cardiel, A.C., Taitt, B. J., and Choi, K., Stabilities, regeneration pathways, and electrocatalytic properties of nitroxyl radicals for the electrochemical oxidation of 5‑hydroxymethylfurfural, ACS Substainable Chem. Eng., 2019, vol. 7, p. 11138.

    CAS  Article  Google Scholar 

  19. 19

    Manda, S., Nakanishi, I., Ohkubo, K., Yakumaru, H., Matsumoto, K., Ozawa, T., Ikota, N., Fukuzumi, S., and Anzai, K., Nitroxyl radicals: electrochemical redox behaviour and structure-activity relationships, Org. Biomol. Chem., 2007, vol. 5, p. 3951.

    CAS  Article  Google Scholar 

  20. 20

    Rafiee, M., Miles, K.C., and Stahl, S.S., Electrocatalytic alcohol oxidation with TEMPO and bicyclic nitroxyl derivatives: driving force trumps steric effects, J. Am. Chem. Soc., 2015, vol. 137, p. 14751.

    CAS  Article  Google Scholar 

  21. 21

    Hill-Cousins, J.T., Kuleshova, J., Green, R.A., Birkin, P.R., Pletcher, D., Underwood, T.J., Leach, S.G., and Brown, R.C.D., TEMPO-mediated electrooxidation of primary and secondary alcohols in a microfluidic electrolytic cell, ChemSusChem, 2012, vol. 5, p. 326.

    CAS  Article  Google Scholar 

  22. 22

    Green, R.A., Hill-Cousins, J.T., Brown, R.C.D., Pletcher, D., and Leach, S.G., A voltammetric study of the 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) mediated oxidation of benzyl alcohol in tert-butanol/water, Electrochim. Acta, 2013, vol. 113, p. 550.

    CAS  Article  Google Scholar 

  23. 23

    Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellis Horwood Press, 1994, p. 388.

    Google Scholar 

Download references


The authors acknowledge financial support from the National Natural Science Foundation of China (Grant no. 21962020)

Author information



Corresponding author

Correspondence to Wenbin Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhixing Xiong, Ouyang, D. & Zhang, W. Voltammetric Study of the Electrocatalytic Oxidation of L-Sodium Lactate by 4-Acetamido-TEMPO. Russ J Electrochem 56, 984–988 (2020). https://doi.org/10.1134/S1023193520110075

Download citation


  • 4-acetamido-TEMPO
  • L-sodium lactate
  • electrooxidation
  • cyclic voltammetry