Comparative Evaluation of Dimethylsulfoxide and Dimethylsulfone Adsorption on a Smooth Platinum Electrode in Acidic Environment

Abstract

a comparative assessment of dimethylsulfoxide and dimethylsulfone adsorption on a smooth platinum electrode in acidic medium in the region of anode potentials is presented. The adsorption isotherms in the “hydrogen” potential range, depending on the dimethylsulfoxide and dimethylsulfone concentration, are S-shaped. At the adsorbate concentrations in the solution exceeding 0.1 M, the surface coverage with dimethylsulfoxide and dimethylsulfone is nearly the same and changes but slightly. A significant difference in the adsorption characteristics of dimethylsulfoxide and dimethylsulfone in the potential region of oxygen adsorption is found. According to the Pt-electrode surface coverage with oxygen in the presence of the test substances, it was concluded that the value of the dimethylsulfoxide and dimethylsulfone adsorption is maximal only when their bulk concentration is higher than 0.1 M, here the oxygen surface coverage in the presence of dimethylsulfone exceeds that in the background solution.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Zhang, H., Li, Ch., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev. 2017, vol. 46, no. 3, p. 797. https://doi.org/10.1039/c6cs00491a

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Hilbig, P., Ibing, L., Wagner, R., Winter, M., and Cekic-Laskovic, I., Ethyl methyl sulfone-based electrolytes for lithium ion battery applications, Energies, 2017, vol. 10, no. 9, p. 1312. https://doi.org/10.3390/en10091312

    CAS  Article  Google Scholar 

  3. 3

    Shota, F. and Thomas, J.M., Sulfone-containing methacrylate homopolymers: wetting and thermal properties, Langmuir, 2016, vol. 32, no. 3, p. 765. https://doi.org/10.1021/acs.langmuir.5b04265

    CAS  Article  Google Scholar 

  4. 4

    Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state of the art and prospects for the development of electrolyte systems for lithium power sources, Electrochem. energy (in Russian), 2016, no. 4 (16), p. 155. https://doi.org/10.18500/1608-4039-2016-4-155-195

  5. 5

    Gafurov, M.M., Kirillov, S.A., Gorobets, M.I., Rabadanov, K. Sh., Ataev, M.B., Tretyakov, D.O., and Aydemirov, K.M., Phase equilibrium and ionic solvation in the lithium tetrafluoroborate-dimethylsulphoxide system, JAS, 2014, no. 6 (81), p. 912. https://doi.org/10.1007/s10812-015-0028-9

  6. 6

    Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Aliev A.R., Ahmedov, I.R., Kakagasanov, M.G., and Kraminin, S.P., Vibrational spectra of an LiNO3–(CH3)2SO2 system, JAS, 2012, no. 2 (79), p. 184. https://doi.org/10.1007/s10812-012-9581-7

  7. 7

    Fanny, B., Yuhui, Ch., Lee, J., Schaltin, S., Jan, F., and Bruce P.G., Sulfone-based electrolytes for nonaqueous Li–O2 batteries, Phys. Chem. C, 2014, vol. 118, no. 33, p. 18892. https://doi.org/10.1021/jp5048198

    CAS  Article  Google Scholar 

  8. 8

    Maca, J., Frk, M., Rozsivalova, Z., and Sedlarikova, M., Properties of sulfolane based aprotic electrolytes, Electrochim. Acta, 2013, vol. 31, no. 6, p. 321. https://doi.org/10.4152/pea.201306321

    CAS  Article  Google Scholar 

  9. 9

    Markaryan, Sh.A., Aznauryan, M.G., and Kazoyan, E.A., Physicochemical properties of aqueous solutions of dimethyl- and diethylsulfones, Russ. J. Phys. Chem., 2011, no. 12 (85), p. 2138. https://doi.org/10.1134/S0036024411120211

  10. 10

    Kolosnitsyn, V.S., Kostryukova, N.V., and Legostaeva, M.V., Electrical conductivity and thermal properties of gel polymer electrolytes based on sulfones, Electrochem. energy (in Russian), 2004, no. 2 (4), p. 90.

  11. 11

    Vandermeeren, L., Leyssens, T., and Peeters, D., Theoretical study of the properties of sulfone and sulfoxide functional groups, J. Molecular Structure: THEOCHEM, 2007, vol. 804, no. 3, p. 1006. https://doi.org/10.1016/j.theochem.2006.10.006

    CAS  Article  Google Scholar 

  12. 12

    Xu, K. and Angela, C.A., High anodic stability of a; new electrolyte solvent: un-symmetric noncyclic aliphatic sulfone, Electrochem. Soc., 1998, vol. 145, no. 4, p. 70.

    Article  Google Scholar 

  13. 13

    Frumkin, A.N., Damaskin, B.B., Grigoryev, N.B., and Bagotskaya, I.A., Potentials of zero charge, interaction of metals with water and adsorption of organic substances. I. Potentials of zero charge and hydrophilicity of metals, Electrochim. Acta, 1974, vol. 19, no. 2, p. 69. https://doi.org/10.1016/0013-4686(74)85058-9

    CAS  Article  Google Scholar 

  14. 14

    Kazarinov, V.E., Adsorption of anions on platinum at anodic potentials, Russ. J. Electrochem., 1966, vol. 2, no. 12, p. 1389.

    CAS  Google Scholar 

  15. 15

    Bagotsky, V.S., Basics of electrochemistry (in Russian), Moscow: Khimiya, 1988.

    Google Scholar 

  16. 16

    Petrii, O.A., Adsorption phenomena on platinum group metal electrodes, Russ. Chem. Rev, 1975, vol. 44, no. 11, p. 973.

    Article  Google Scholar 

  17. 17

    Damaskin, B.B., Nekrasov, L.N., Petrii, O.A., Podlovchenko, B.I., Stenina, E.V., and Fedorovich, N.V., Electrode processes in solutions of organic compounds (in Russian), Moscow: Moscow State University, 1985.

    Google Scholar 

  18. 18

    Clavilier, J., The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region, J. Electroanal. Chem., 1980, vol. 107, no. 1, p. 211. https://doi.org/10.1016/s0022-0728(79)80023-6

    CAS  Article  Google Scholar 

  19. 19

    Danilov, A.I., Molodkina, E. B., and Polukarov, Yu.M., Surface and subsurface oxygen on platinum. Solution 0.5 M H2SO4, Russ. J. Electrochem., 2004, vol. 40, p. 667.

    Google Scholar 

  20. 20

    Votchenko, E.Y., Kubanova, M.S., Smirnova, N.V., and Petrii, O.A., Adsorption and electrooxidation of dimethyl ether on platinized platinum electrode in sulfuric acid, Russ. J. Electrochem., 2010, vol. 46, p. 212. https://doi.org/10.1134/S1023193510020138

    CAS  Article  Google Scholar 

  21. 21

    Petrii, O.A. Zero charge potentials of platinum metals and electron work functions (A review), Russ. J. Electrochem., 2013, vol. 49, p. 401.] https://doi.org/10.7868/S0424857013050149

  22. 22

    Tarasevich M.R. and Korchagin, O.V., Electrocatalysis and pH A (review), Russ. J. Electrochem., 2013, vol. 49, p. 676. https://doi.org/10.1134/S102319351307015X

    CAS  Article  Google Scholar 

  23. 23

    Turygin, V.V. and Tomilov, A.P., Possible trends in the development of applied electrochemical synthesis of organic compounds (review), Russ. J. Electrochem., 2015, vol. 51, p. 999. https://doi.org/10.1134/S1023193515110191

    CAS  Article  Google Scholar 

  24. 24

    Baturina, O.A., Gould, B.D., Korovina, A., Garsany, Y., Stroman, R., and Northrup, P.A., Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-edge XANES and electrochemistry, Langmuir, 2011, vol. 27, no. 24, p. 14930. https://doi.org/10.1021/la2033466

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Garcia-Araez, N., Climent, V., Rodriguez, P., and Feliu, J.M., Elucidation of the chemical nature of adsorbed species for Pt(111) in H2SO4. Solutions by Thermodynamic Analysis, Langmuir, 2010, vol. 26, no. 14, p. 12408. https://doi.org/10.1021/la101112b

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Hoshi, N., Nakamura, M., Sakata, O., Nakahara, A., Naito, K., and Ogata, H., Surface X-ray scattering of stepped surfaces of platinum in an electrochemical environment: Pt(331) = 3(111)–(111) and Pt(511) = 3(100)–(111), Langmuir, 2011, vol. 27, no. 7, p. 4236. https://doi.org/10.1021/la200199b

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Jerkiewicz, G., Vatankhah, G., Tanaka, S., and Lessard, J., Discovery of the potential of minimum mass for platinum electrodes, Langmuir, 2011, vol. 27, no. 7, p. 4220. https://doi.org/10.1021/la200153n

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mechanism of electrode reactions of organic intermediates with and without the participation of a proton donor/acceptor, Russ. J. General Chem., 2005, vol. 49, no. 5, p. 17.

    CAS  Google Scholar 

  29. 29

    Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mechanism of electroreduction of intermediates with and without a proton donor, Electrochim. Acta, 2002, vol. 47, no. 24, p. 3891. https://doi.org/10.1016/S0013-4686(02)00358-4

    CAS  Article  Google Scholar 

  30. 30

    Shah, J., Kansara, S., Sanjeev, K.G., and Yogesh, S., Oxygen adsorption on palladium monolayer as a surface catalyst, Physics Letters A, 2017. vol. 381. p. 3084. https://doi.org/10.1016/j.physleta.2017.07.024

    CAS  Article  Google Scholar 

  31. 31

    Ruge, M., Drnec, J., Rahn, B., Reikowski, F., Harrington, D. A., Carlà, F., and Magnussen, O.M., Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction, J. Amer. Chem. Soc., 2017, vol. 139, no. 12, p.4532. https://doi.org/10.1021/jacs.7b0103

    CAS  Article  Google Scholar 

  32. 32

    Gómez-Marín, A.M. and Feliu, J.M. Oxygen reduction on platinum single crystal electrodes, Reference Module in Chemistry, Molecular Sci. and Chem. Engineering (Encyclopedia of Interfacial Chemistry), 2018, p. 820. https://doi.org/10.1016/B978-0-12-409547-2.13333-5

  33. 33

    Krivenko, A.G., Komarova, N.S., Stenina, E.V., and Sviridova, L.N., Adsorption of surface-active compounds with the skeleton molecular structure from dimethylsulfoxide solutions on carbon nanotubes, Russ. J. Electrochem., 2012, vol. 48, p. 36. https://doi.org/10.1134/S1023193512010107

    CAS  Article  Google Scholar 

  34. 34

    Stenina, E.V, Sviridova, L.N., and Petrov, N.K., Adsorption phenomena in the systems containing macrocyclic cavitand cucurbit[7]uryl, Russ. J. Electrochem., 2017, vol. 53, p. 103. https://doi.org/10.1134/S102319351701013X

    CAS  Article  Google Scholar 

  35. 35

    Alekseeva, E.Yu., Safonov, V.A., and Petry, O.A., Potentials of zero charge and the structure of the electric double layer on platinum and palladium in dimethyl sulfoxide, Russ. J. Electrochem., 1984, vol. 20, p. 945.

    CAS  Google Scholar 

  36. 36

    Sobkowski, J. and Szklarczyk, M., The behaviour of high polar organic solvents on platinum electrodes–I. The study of adsorption and electrode reactions of dimethylsulphoxide, Electrochim. Acta, 1980, vol. 25, p. 383. https://doi.org/10.1016/0013-4686(80)87027-7

    CAS  Article  Google Scholar 

  37. 37

    Dabkowski, J., Zagórska, I., Dabkowska, M., Koczorowski, Z., and Trasatti, S., Adsorption of DMSO at the free surface of water: surface excesses and surface potential shifts in the low concentration range, J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 3873. https://doi.org/10.1039/FT9969203873

    Article  Google Scholar 

  38. 38

    Osadchenko, I. M. and Tomilov, A.P., Electrochemical oxidation of methyl sulfide in aqueous solutions, Russ. J. Electrochem., 2002, vol. 38, p. 658. https://doi.org/10.1023/a:1016014920832

    CAS  Article  Google Scholar 

  39. 39

    Tanaskovic, V., Pasti, I. A., Gavrilov, N., and Mentus, S.V., Dimethylsulfoxide as a modifier of platinum electrocatalytic activity toward oxygen reduction reaction in aqueous solutions: Combined theoretical and experimental study, J. Electroanalyt. Chem., 2014, vol. 714–715, p. 11. https://doi.org/10.1016/j.jelechem.2013.12.020

    CAS  Article  Google Scholar 

  40. 40

    Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Investigation of Electrochemical Behavior of Secondary Products of Capture of OH Radicals by Dimethyl Sulfoxide Molecules Using Laser Photoemission, Moscow Univer. Chem. Bull., 2013, vol. 68, no. 6, p. 273. https://doi.org/10.3103/S0027131413060023

    Article  Google Scholar 

  41. 41

    Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules, J. Solid State Electrochem., 2011, vol. 15, no. 10, p. 2119. https://doi.org/10.1007/s10008-011-1534-1

    CAS  Article  Google Scholar 

  42. 42

    Khibiev, Kh.S., Omarova, K.O., and Khidirov, Sh.Sh., Electrochemical synthesis of dimethylsulfone and methanesulfonic acid from dimethylsulfoxide, Russ. J. Electrochem., 2010, vol. 46, no. 8, p. 960. https://doi.org/10.1134/S1023193510080161

    CAS  Article  Google Scholar 

  43. 43

    Khidirov, Sh.Sh. and Omarova, K.O., Adsorption of oxygen and dimethyl sulfoxide on the mono atom of the smooth surface of the platinum anode at high potentials, Herald DGU (in Russian), 2013, no. 1 (28), p. 177.

  44. 44

    Khidirov, Sh.Sh., Omarova, K.O., and Hibiev, Kh.S. The mechanism of anodic oxidation of dimethyl sulfoxide on platinum in an alkaline medium, Herald DGU (in Russian), 2013, no. 6 (28), p. 176.

  45. 45

    Omarova, K.O., Khidirov, Sh.Sh., and Khibiev, Kh.S., Adsorption of dimethyl sulfoxide on a smooth platinum electrode, Herald DSU (in Russian), 2013, no. 1 (28), p. 194.

  46. 46

    Khidirov, Sh.Sh., Omarova, K.O., and Khibiev, Kh.S., Method of producing dimethyl sulfone, Patent 2377235 (Russia), 2009. https://goo-gl.su/JCBiAJ3

  47. 47

    Khidirov, Sh.Sh., Omarova, K.O., and Khibiev, Kh.S., Method of producing methanesulfonic acid, Patent 2344126 (Russia), 2009. https://goo-gl.su/a7RuRXMd

  48. 48

    Akhmedov, M.A., Khidirov, Sh.Sh., Koparova, M.Y., and Khibiev, Kh.S., Electrochemical synthesis of methanesulfonic acid from aqueous solutions of dimethyl sulfone (in Russian), Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2016, no. 12 (59), p. 100. https://doi.org/10.6060/tcct.20165912.5345

  49. 49

    Akhmedov, M.A., Khidirov, Sh.Sh., and Koparova, M.Yu., Electrochemical oxidation of dimethyl sulfone in alkaline medium, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (in Russian), 2018, vol. 61, no. 8, p. 32. https://doi.org/10.6060/ivkkt.20186108.5707

  50. 50

    Khidirov, Sh.Sh. Akhmedov, M.A., Khibiev, Kh.S., and Omarova, K.O., Method of producing methanesulfonic acid, Patent 2496772 (Russia), 2013. https://goo-gl.su/5WOgLhxS.

  51. 51

    Khidirov, Sh.Sh., Akhmedov, M.A., and Rabadanov M.Kh., Method of producing methanesulfonic acid, Patent 2554880 (Russia), 2015. https://goo-gl.su/L0WTTTz.

  52. 52

    Khidirov, Sh.Sh., Akhmedov, M.A., Rabadanov, M.Kh., and Kaparova, M.Yu., Method of producing dimethyl disulfon, Patent 2641302 (Russia), 2018. https://goo-gl.su/mHzIEP.

  53. 53

    Akhmedov, M.A., Khidirov, Sh.Sh., Anodic processes at smooth platinum electrode in concentrated solution of methanesulfonic acid, Russ. J. Electrochem., 2019, vol. 55, no. 6, p. 579. https://doi.org/10.1134/S1023193519060028

    CAS  Article  Google Scholar 

  54. 54

    Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, J. Electroanalyt. Chem., 1992, vol. 327, p. 353. https://doi.org/10.1016/0022-0728(92)80162-w

    CAS  Article  Google Scholar 

  55. 55

    Scholz, F., Electro-analytical Methods. Guide to Experiments and Applications, Berlin-Heidelberg: Springer, 2002. 326 p.

    Google Scholar 

  56. 56

    Damaskin, B.B. and Petrii, O.A., Introduction to electrochemical kinetics (in Russian), Moscow: Vysshaya Shkola, 1983.

    Google Scholar 

  57. 57

    Martens, W.N., Frost, R.L., Kristof, J., and Theo Kloprogge, J., Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K, Raman Spectroscopy, 2002, vol. 33, p. 84. https://doi.org/10.1002/jrs.827

    CAS  Article  Google Scholar 

  58. 58

    McLachlan, R.D. and Carter, V.B., Vibrational spectra of crystalline dimethyl sulfone, Spectrochem.Acta Part A: Molecular Spectroscopy, 1970, vol. 26, p. 1121. https://doi.org/10.1016/0584-8539(70)80016-2

    CAS  Article  Google Scholar 

  59. 59

    Reuter, H., Structural parameters of dimethyl sulfoxide, DMSO, at 100 K, based on a redetermination by use of high-quality single-crystal X-ray data, Acta Cryst., 2017, vol. E73, p. 1405. https://doi.org/10.1107/S2056989017012464

    Article  Google Scholar 

  60. 60

    Thomas, S.P., Shi, M.W., Koutsantonis, G.A., Jayatilaka, D., Edwards, A.J., and Spackman, M.A., The elusive structural origin of plastic bending in dimethyl sulfone crystals with quasi-isotropic crystal packing, Angew. Chem., 2017, vol. 129, no. 29, p. 8588. https://doi.org/10.1002/ange.201701972

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is carried out using high-technology equipment of the Centers for Collective Use, the Dagestan Federal Research Center RAS and Dagestan State University.

Funding

This work is financially supported by the Innovation Foundation, the Programs UMNIK-14-1G 3326GU1/2014 (code 0003751) and UMNIK 2-15-10 № 8809GU2/2015 (code 0016996).

Author information

Affiliations

Authors

Contributions

Akhmedov M.A., Ibragimova K.O. and Khidirov Sh. invented and developed an experiment, participated in writing the text of the article. The author Akhmedov M.A. assembled an experimental setup with a three-electrode cell with a reversible hydrogen reference electrode and conducted an electrochemical study of dimethyl sulfone on a smooth platinum electrode in an acidic medium, and obtained, isolated, purified, and prepared samples of compounds for preparative electrochemical analysis of dimethyl sulfone for their physicochemical analysis. The author Ibragimova K.O. also conducted an electrochemical study and preparative electrolysis of dimethyl sulfoxide on a smooth platinum electrode in an acidic medium, and also processed experimental data to study the adsorption of dimethyl sulfoxide on smooth platinum. The author Akhmedov conducted research using Raman spectroscopy, scanning microscopy, energy dispersive and X-ray analysis, and also processed experimental data on the adsorption of dimethyl sulfone on a smooth platinum electrode in an acidic medium, participated in the writing of the text of the article and prepared all the graphic drawings related to the manuscript of the article . All authors participated in the discussion of the results.

Corresponding authors

Correspondence to M. A. Akhmedov or Sh. Sh. Khidirov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, M.A., Ibragimova, K.O. & Khidirov, S.S. Comparative Evaluation of Dimethylsulfoxide and Dimethylsulfone Adsorption on a Smooth Platinum Electrode in Acidic Environment. Russ J Electrochem 56, 396–404 (2020). https://doi.org/10.1134/S1023193520040023

Download citation

Keywords:

  • adsorption
  • smooth platinum
  • voltammetry
  • dimethylsulfoxide
  • dimethylsulfone
  • surface coverage
  • electrode processes
  • molecular spectroscopy