Skip to main content
Log in

Simultaneous Determination of Epinephrine and Folic Acid Using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive and convenient electrochemical sensor was developed for determination of epinephrine by using the Fe3O4@SiO2/GR nanocomposite modified graphite screen printed electrode, and its electrochemical behaviour was investigated by cyclic voltammetry, chronoamperometry and differential pulse voltammograms. Differential pulse voltammetry results exhibited the linear dynamic range of 5.0–1000.0 μM, with detection limits (S/N = 3) of 1.0 μM. The prepared electrode was successfully applied for simultaneous determination of epinephrine and folic acid in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.

    Article  CAS  Google Scholar 

  2. Dong, J., Liu, S., Fu, Y., and Wang, Q., Investigation of strain-induced modulation on electronic properties of graphene field effect transistor, Phys. Lett., 2017, vol. 381, p. 292.

    Article  CAS  Google Scholar 

  3. Yazici, E., Yanik, S., and Yilmaz, M.B., Graphene oxide nano-domain formation via wet chemical oxidation of grapheme, Carbon, 2017, vol. 111, p. 822.

    Article  CAS  Google Scholar 

  4. Beitollahi, H., Ebadinejad, F., Shojaie, F., and Torkzadeh- Mahani, M., A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide, Anal. Methods, 2016, vol. 8, p. 6185.

    Article  CAS  Google Scholar 

  5. Dong, L., Chen, W., Zheng, C, and Deng, N., Microstructure and properties characterization of tungsten–copper composite materials doped with grapheme, J. Alloys Compd., 2017, vol. 695, p. 1637.

    Article  CAS  Google Scholar 

  6. Carbone, M., Gorton, L., and Antiochia, R., An overview of the latest graphene-based sensors for glucose detection: the effects of graphene defects, Electroanalysis, 2015, vol. 27, p. 16.

    Article  CAS  Google Scholar 

  7. Beitollahi, H., Tajik, S., and Jahani, Sh., Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite, Electroanalysis, 2016, vol. 28, p. 1093.

    Article  CAS  Google Scholar 

  8. Qiu, H.J., Guan, Y., Luo, P., and Wang, Y., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells, Biosens. Bioelectron., 2017, vol. 89, p. 85.

    Article  CAS  PubMed  Google Scholar 

  9. Bai, Y., Liu, M., Sun, J., and Gao, L., Fabrication of Ni–Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors, Ionics, 2016, vol. 22, p. 535.

    Article  CAS  Google Scholar 

  10. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO–CuO nanoplates and modifier, Mater. Sci. Eng., C, 2016, vol. 69, p. 128.

    CAS  Google Scholar 

  11. Fu, C., Li, M., Li, H., Li, C., Qu, C., and Yang, B., Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application, Mater. Sci. Eng., C, 2017, vol. 72, p. 425.

    Article  CAS  Google Scholar 

  12. Song, X., Shi, Q., Wang, H., Liu, S., Tai, C., and Bian, Z., Preparation of Pd–Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation–reduction properties for chlorophenols, Appl. Catal., B, 2017, vol. 203, p. 442.

    Article  CAS  Google Scholar 

  13. Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nanocomposite for sensitive and selective electrochemical sensing of Levodopa and Tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.

    Article  CAS  Google Scholar 

  14. Osikoya, A.O., Parlak, O., Murugan, N.A., Dikio, E.D., Moloto, H., Uzun, L., Turner, A.P.F., and Tiwari, A., Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing, Biosens. Bioelectron., 2017, vol. 89, p. 496.

    Article  CAS  PubMed  Google Scholar 

  15. Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene, J. Electrochem. Soc., 2016, vol. 163, p. H1157.

    Google Scholar 

  16. Wang, Z.H., Xia, J.F., Zhu, L.Y., Zhang, F.F., Guo, X.M., Li, Y.H., and Xia, Y.Z., The fabrication of poly(acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid, Sens. Actuators, B, 2012, vol. 161, p. 131.

    Article  CAS  Google Scholar 

  17. Zhang, J.X., Gray, D.H., Lalonde, H., and Carr, N., Digital necrosis after lidocaine and epinephrine injection in the flexor tendon sheath without phentolamine rescue, J. Hand. Surg. Am., 2016, vol. 42, p. 119.

    Article  CAS  Google Scholar 

  18. Deakin, C.D., Yang, J., Nguyen, R., Zhu, J., Brett, S.J., Nolan, J.P., Perkins, G.D., Pogson, D.G., and Parnia, S., Effects of epinephrine on cerebral oxygenation during cardiopulmonary resuscitation: A prospective cohort study, Resuscitation, 2016, vol. 109, p. 138.

    Article  PubMed  Google Scholar 

  19. Devadas, B., Rajkumar, M., and Chen, S.M., Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol, Colloids Surf., B, 2014, vol. 116, p. 674.

    Article  CAS  Google Scholar 

  20. Thomas, T., Mascarenhas, R.J., D’Souza, O.J., Detriche, S., Meldialif, Z., and Martis, P., Pristine multiwalled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine, Talanta, 2014, vol. 125, p. 352.

    Article  CAS  PubMed  Google Scholar 

  21. Beitollahi, H., Mazloum Ardakani, M., Ganjipour, B., and Naeimi, H., Novel 2,2'-[1,2-ethanediyl-bis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid, Biosens. Bioelectron., 2008, vol. 24, p. 362.

    CAS  Google Scholar 

  22. Jang, C.H., Clio, Y.B., Lee, J.S., Kim, G.H., Jung, W.K., and Pak, S.C., The effect of propofol infusion with topical epinephrine on cochlear blood flow and hearing: An experimental study, Int. J. Pediatr. Otorhinolaryngol., 2016, vol. 91, p. 23.

    Article  PubMed  Google Scholar 

  23. Pradhan, P., Mascarenhas, R.J., Thomas, T., Namboothiri, I.N., D’Souza, O.J., and Meldialif, Z., Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples, J. Electroanal. Chem., 2014, vol. 732, p. 30.

    Article  CAS  Google Scholar 

  24. Hassan, S.Y., Clinical features and outcome of epinephrine-induced Takotsubo syndrome: Analysis of 33 published cases, Cardiovasc. Revasc., Med., 2016, vol. 17, p. 450.

    Article  Google Scholar 

  25. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid, Electroanalysis, 2015, vol. 27, p. 2620.

    CAS  Google Scholar 

  26. Taei, M., Hasanpour, F., Tavakkoli, N., and Bahrameian, M., Electrochemical characterization of poly(fuchsine acid) modified glassy carbon electrode and its application for simultaneous determination of ascorbic acid, epinephrine and uric acid, J. Mol. Liq., 2015, vol. 211, p. 353.

    Article  CAS  Google Scholar 

  27. Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., and Sekar, C., Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode, Sens. Actuators, B, 2015, vol. 221, p. 1412.

    Article  CAS  Google Scholar 

  28. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.

    Article  CAS  Google Scholar 

  29. Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., and Sekar, C., Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn–SnO2 nanoparticles modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 770, p. 23.

    Article  CAS  Google Scholar 

  30. Santos, C., Gomes, P., Duarte, J.A., Almeida, M.M., Costa, M.E.V., and Fernandes, M.H., Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation, Int. J. Pharm., 2017, vol. 516, p. 185.

    Article  CAS  PubMed  Google Scholar 

  31. Kingsley, M.P., Desai, P.B., and Srivastava, A.K., Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode, J. Electroanal. Chem., 2015, vol. 741, p. 71.

    Article  CAS  Google Scholar 

  32. Li, X., Tan, X., Yan, J., Hu, Q., Wu, J., Zhang, H., and Chen, X., A sensitive electrochemiluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru-doped silica nanocomposite modified electrode, Electrochim. Acta, 2016, vol. 187, p. 433.

    Article  CAS  Google Scholar 

  33. Wang, X., You, Z., Cheng, Y., Sha, H., Li, G., Zhu, H., and Sun, W., Application of nanosized gold and graphene modified carbon ionic liquid electrode for the 2+ (bpy)3 sensitive electrochemical determination of folic acid, J. Mol. Liq., 2015, vol. 204, p. 112.

    Article  CAS  Google Scholar 

  34. Teresa McGee, E.J., Sangakkara, A.R., and Diosady, L.L., Double fortification of salt with folic acid and iodine, J. Food Eng., 2017, vol. 198, p. 72.

    Google Scholar 

  35. Rastakhiz, N., Beitollahi, H., Kariminik, A., and Karimi, F., Voltammetric determination of carbidopa in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode, J. Mol. Liq., 2012, vol. 172, p. 66.

    Article  CAS  Google Scholar 

  36. Ananthi, A., Kumar, S.S., and Phani, K.L., Facile onestep direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid, Electrochim. Acta, 2015, vol. 151, p. 584.

    Article  CAS  Google Scholar 

  37. Ji, C., Walton, J., Sub, Y., and Tella, M., Simultaneous determination of plasma epinephrine and norepinephrine using an integrated strategy of a fully automated protein precipitation technique, reductive ethylation labeling and UPLC–MS/MS, Anal. Chim. Acta, 2010, vol. 670, p. 84.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, K.Y., Fu, Q., Leung, K.W., Wong, Z.C.F., Choi, R.C.Y., and Tsim, K.W.K., The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography–electrospray tandem mass spectrometry, J. Chromatogr. B, 2011, vol. 879, p. 737.

    Article  CAS  Google Scholar 

  39. Chan, E.C.Y. and Ho, P.C., High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine, Mass Spectrom., 2000, vol. 14, p. 1959.

    CAS  Google Scholar 

  40. Michalowski, J. and Halaburda, P., Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source, Talanta, 2001, vol. 55, p. 1165.

    Article  CAS  PubMed  Google Scholar 

  41. Lin, C.E., Fang, I.J., Deng, Y., Jr., Liao, W.S., Cheng, H.T., and Huang, W.P., Capillary electrophoretic studies on the migration behavior of cationic solutes and the influence of interactions of cationic solutes with sodium dodecyl sulfate on the formation of micelles and critical micelle concentration, J. Chromatogr. A, 2004, vol. 1051, p. 85.

    CAS  Google Scholar 

  42. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.

    Article  CAS  Google Scholar 

  43. Jain, A.K., Gupta, V.K., Radi, S., Singh, L.P., and Raisoni, J.R., A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 2006, vol. 51, p. 2547.

    Article  CAS  Google Scholar 

  44. Gupta, V.K., Jain, A.K., Maheshwari, G., and Lang, H., Copper(II)-selective potentiometric sensor based on porphyrins in PVC matrix, Sens. Actuators, B, 2006, vol. 117, p. 99.

    Article  CAS  Google Scholar 

  45. Jain, A.K., Gupta, V.K., Singh L.P., and Khurana, U., Macrocycle based membrane sensors for the determination of cobalt(II) ions, Analyst, 1997, vol. 122, p. 583.

    Article  CAS  Google Scholar 

  46. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98.

    Article  CAS  Google Scholar 

  47. Movlaee, K., Ganjali, M.R., Aghazadeh, M., Beitollahi, H., Hosseini, M., Shahabi, S., and Norouzi, P., Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid, Int. J. Electrochem. Sci., 2017, vol. 12, p. 305.

    Article  CAS  Google Scholar 

  48. Gupta, V.K., Prasad, R., Mangla, R., and Kumar, P., New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix, Anal. Chim. Acta, 2000, vol. 420, p. 19.

    Article  CAS  Google Scholar 

  49. Prasad, R., Gupta, V.K., and Kumar, A., Metallotetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination, Anal. Chim. Acta, 2004, vol. 508, p. 61.

    Article  CAS  Google Scholar 

  50. Gupta, V.K., Agarwal, S., and Singhal, B., A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screening, 2011, vol. 14, p. 284.

    Article  CAS  Google Scholar 

  51. Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem., 2010, vol. 407, p. 79.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta, V.K., Jain, A.K., and Maheshwari, G., Novel aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix, Talanta, 2007, vol. 72, p. 1469.

    Article  CAS  PubMed  Google Scholar 

  53. Sadikoglu, M., Yilmaz, S., Kurt, I., Selvi, B., Sari, H., Erduran, N., Usta, E., and Saglikoglu, G., Electrocatalytic oxidation of hydrazine on poly(4-aminobenzene sulfonic acid)-modified glassy carbon electrode, Russ. J. Electrochem., 2016, vol. 52, p. 539.

    Article  CAS  Google Scholar 

  54. Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion selective sensor based on a μ bis (tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.

    Article  CAS  PubMed  Google Scholar 

  55. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B, 2010, vol. 149, p. 252.

    Article  CAS  Google Scholar 

  56. Gupta, V.K., Karimi-Maleh, H., and Roya Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, Int. J. Electrochem. Sci., 2015, vol. 10, p. 303.

    Google Scholar 

  57. Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using poly(vinyl chloride) based crown ether membrane, Analyst, 1995, vol. 120, p. 495.

    Article  CAS  Google Scholar 

  58. Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix[4]arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114.

    Article  CAS  Google Scholar 

  59. Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, p. 7849.

    Article  CAS  Google Scholar 

  60. Gupta, V.K., Goyal, R.N., and Sharma, R.A., Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: Poly(vinyl chloride) based sensor for acetate, Talanta, 2008, vol. 76, p. 859.

    Article  CAS  PubMed  Google Scholar 

  61. Jain, A.K., Gupta, V.K., Sahoo B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. incl. Anal. Commun., 1995, vol. 32, p. 99.

    Article  Google Scholar 

  62. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216.

    Article  CAS  Google Scholar 

  63. Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II), J. Hazard. Mater., 2010, vol. 183, p. 402.

    Article  CAS  PubMed  Google Scholar 

  64. Gupta, V.K., Jain, A.K., and Kumar, P., PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. actuators, B, 2006, vol. 120, p. 259.

    Article  CAS  Google Scholar 

  65. Kurmaz, V.A. and Gul’tyai, V.P., Electrode reactions and electroanalysis of organomercury compounds, Russ. Chem. Rev., 2010, vol. 79, p. 307.

    Article  CAS  Google Scholar 

  66. Gupta, V.K., Kumar, S., Singh, R., Singh, L.P., Shoora, S.K., and Sethi, B., J. Mol. Liq., 2014, vol. 195, p. 65.

    Article  CAS  Google Scholar 

  67. Karthikeyan, S., Gupta, V.K., Boopathy, R., Titus, A., and Sekaran, G., A new approach for the degradation of high concentration of aromatic amine by heterocatalytic fenton oxidation: Kinetic and spectroscopic studies, J. Mol. Liq., 2012, vol. 173, p. 153.

    Article  CAS  Google Scholar 

  68. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98.

    Article  CAS  Google Scholar 

  69. Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensors for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272.

    Article  CAS  PubMed  Google Scholar 

  70. Gupta, V.K., Singh, A.K., Mehtab, S., and Gupta, B.A., A cobalt(II) selective PVC membrane based on a Schiff base complex of N,N-bis (salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta, 2006, vol. 566, p. 5.

    Article  CAS  Google Scholar 

  71. Jahani, Sh. and Beitollahi, H., Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes, Electroanalysis, 2016, vol. 28, p. 2022.

    Article  CAS  Google Scholar 

  72. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80.

    Article  CAS  PubMed  Google Scholar 

  73. Jain, A.K., Gupta, V.K., Khurana U., and Singh, L.P., A new membrane Sensor for UO2+, based on 2-Hydroxyacetophenoneoxime-thioureatrioxane resin, Electroanalysis, 1997, vol. 9, p. 857.

    Article  CAS  Google Scholar 

  74. Gupta, V.K., Pathania, D., Agarwal, S., and Sharma, S., Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent, J. Mol. Liq., 2012, vol. 174, p. 86.

    Article  CAS  Google Scholar 

  75. Peng, D., Hu, B., Kang, M., Wang, M., He, L., Zhang, Z., and Fang, S., Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II), Appl. Surf. Sci., 2016, vol. 390, p. 422.

    Article  CAS  Google Scholar 

  76. Gupta, V.K., Jain, A.K., Agarwal, P.K.S., and Maheshwari, G., Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix, Sens. Actuators, B, 2006, vol. 113, p. 182.

    Article  CAS  Google Scholar 

  77. Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammet ric sensor for detection of nandrolone, Anal. Chim. Acta, 2007, vol. 597, p. 82.

    Article  CAS  PubMed  Google Scholar 

  78. Gupta, V.K., Gupta, V.K., Al Khayat, M., and Gupta, B., Neutral carriers based polymeric membrane electrodes for selective determinati on of mercury(II), Anal. Chim. Acta, 2007, vol. 590, p. 81.

    CAS  Google Scholar 

  79. Esfandiari Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-Benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; Detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.

    Google Scholar 

  80. Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical analysis of some toxic metals and drugs by ion selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282.

    Article  CAS  PubMed  Google Scholar 

  81. Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., Adsorption of carmoisine A from wastewater using waste materials—Bottom ash and de-oiled soya, J. Colloid Interface Sci., 2009, vol. 355, p. 24.

    Article  CAS  Google Scholar 

  82. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.

    Article  CAS  Google Scholar 

  83. Mohamed, M.E., Modified carbon paste electrode for potentiometric determination of aluminium ion in spiked real water sample, Russ. J. Electrochem., 2016, vol. 52, p. 754.

    Article  CAS  Google Scholar 

  84. Gupta, V.K., Jain S., and Chandra, S., Chemical sensor for lanthanum(III) determination using Aza Crown as Ionophore in poly(vinyl chloride) matrix, Anal. Chim. Acta, 2003, vol. 486, p. 199.

    Article  CAS  Google Scholar 

  85. Gupta, V.K., Chandra, S., and Mangla, R., Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta, 2002, vol. 47, p. 1579.

    Article  CAS  Google Scholar 

  86. Gupta, V.K., Mangla, R., Khurana U., and Kumar, P., Determination of uranyl Ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor, Electroanalysis, 1999, vol. 11, p. 573.

    Article  CAS  Google Scholar 

  87. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  88. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., N.Y.: Wiley, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohadeseh Safaei.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 9S, pp. S16–S25.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, M., Beitollahi, H. & Shishehbore, M.R. Simultaneous Determination of Epinephrine and Folic Acid Using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite. Russ J Electrochem 54, 851–859 (2018). https://doi.org/10.1134/S1023193518130402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130402

Keywords

Navigation