Skip to main content
Log in

Quantum-Chemical Study of the Adsorption of Pb2+ on Au(111)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The interaction between the Pb2+ ion and gold is studied using the cluster metal surface model and the density functional method. The geometric and energy characteristics of the interaction between this ion and the gold surface are estimated. The form in which the Pb2+ ion exists on the surface is more ad-ionic than ad-atomic. The electron structure of the Au–Pbads2+ system is analyzed. The participation of the adsorbed lead ion and its neighboring gold atoms in the formation of molecular orbitals in this system is estimated. It is established that the contribution to their formation is predominantly provided by the lead s-orbitals and the gold d-orbitals. The interaction with a solvent decreases the transfer of a charge from an adsorbed lead ion to gold. It is demonstrated that the hydrolyzability of a lead ion decreases upon its transition from the electrolyte phase to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haissinsky, M., Mécanisme des dépots électrolytiques et expériences avec les radioéléments, J. Chim. Phys. Phys.-Chim. Biol., 1946. vol. 43, pp. 21–29.

    Google Scholar 

  2. Kolb, D.M., Przasnyski, M., and Gerischer, H., Underpotential deposition of metals and work function differences, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 54, no. 1, pp. 25–38.

    Article  CAS  Google Scholar 

  3. Kolb, D.M., Leutloff, D., and Przasnyski, M., Optical properties of gold electrode surfaces covered with metal monolayers, Surf. Sci., 1975, vol. 47, no. 2, pp. 622–634.

    Article  CAS  Google Scholar 

  4. Takamura, T., Watanabe, F., and Takamura, K., Electro-optical studies of submonolayers of lead formed on gold electrodes by faradaic adsorption in 1M HClO4, Electrochim. Acta, 1974, vol. 19, no. 12, pp. 933–939.

    Article  CAS  Google Scholar 

  5. Adžić, R.R. and Despić, A.R., Catalytic effect of metal adatoms deposited at underpotential, J. Chem. Phys., 1974, vol. 61, no. 8, pp. 3482–3483.

    Article  Google Scholar 

  6. Petrii, O.A. and Lapa, A.S., Electrochemistry of adatomic layers, in Itogi Nauki Tekh., Ser.: Elektrokhim., Polukarov, Yu.M., Ed, Moscow: VINITI, 1987, vol. 24, pp. 96–153.

    Google Scholar 

  7. Rodes, A., Feliu, J.M., Aldaz, A., and Clavilier, J. The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III)/Cr(II), J. Electroanal. Chem. Interfacial Electrochem.,1989, vol. 271, nos. 1–2, pp. 127–139.

    Google Scholar 

  8. Paliteiro, C. and Martins, N., Electroreduction of oxygen on a (100)-like polycrystalline gold surface in an alkaline solution containing Pb(II), Electrochim. Acta, 1998, vol. 44, nos. 8–9, p. 1359–1368.

    Google Scholar 

  9. Oh, I., Gewirth, A.A., and Kwak, J., Electrocatalytic dioxygen reduction on underpotentially deposited Pb on Au(111) studied by an active site blocking strategy, J. Catal., 2003, vol. 213, no. 1, pp. 17–22.

    Article  CAS  Google Scholar 

  10. Hsieh, S.-J. and Gewirth, A.A., Poisoning the catalytic reduction of peroxide on Pb underpotential deposition modified Au surfaces with iodine, Surf. Sci., 2002, vol. 498, nos. 1–2, pp. 147–160.

    Article  CAS  Google Scholar 

  11. McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold: depolarization effects induced by heavy metal ions, J. Electrochem. Soc., 1976, vol. 123, no. 12, pp. 1800–1813.

    Article  Google Scholar 

  12. Bek, R.Yu. and Shuraeva, L.I., Effect of lead ions on the kinetics of gold deposition from cyanide electrolytes, Russ. J. Electrochem., 2004. vol. 40, no. 7, pp. 704–710.

    Google Scholar 

  13. Nicol, M.J., The anodic behaviour of gold. Part II—Oxidation in alkaline solutions, Gold Bull., 1980, vol. 13, no. 3, pp. 105–111.

    Article  CAS  Google Scholar 

  14. Bek, R.Yu., Comparison of catalytic activity of thallium and lead adatoms at the gold electrodeposition and dissolution in cyanide solutions, Russ. J. Electrochem., 2008, vol. 44, no. 9, pp. 1078–1082.

    Article  CAS  Google Scholar 

  15. Hamelin, A. and Lipkowski, J., Underpotential deposition of lead on gold single crystal faces. Part II. General discussion, J. Electroanal. Chem. Interfacial Electrochem., 1984, vol. 171, nos. 1–2, pp. 317–330.

    Article  CAS  Google Scholar 

  16. Schmidt, U., Vinzelberg, S., and Staikov, G., Pb UPD on Ag(100) and Au(100)—2D phase formation studied by in situ STM, Surf. Sci., 1996, vol. 348, no. 3, pp. 261–279.

    Article  CAS  Google Scholar 

  17. Horkans, J., Cahan, B.D., and Yeager, E., An ellipsometric investigation of the underpotential deposition of lead on gold, J. Electrochem. Soc., 1975, vol. 122, no. 12, pp. 1585–1589.

    Article  CAS  Google Scholar 

  18. Leung, L.-W.H. and Weaver, M.J., Extending the metal interface generality of surface-enhanced Raman spectroscopy: Underpotential deposited layers of mercury, thallium, and lead on gold electrodes, J. Electroanal. Chem. Interfacial Electrochem., 1987, vol. 217, no. 2, pp. 367–384.

    Article  CAS  Google Scholar 

  19. Motheo, A.J., Gonzalez, E.R, Tremilliosi-Filho, G., Racotondrainibe, A., Léger, J.-M., Beden, B., and Lamy, C., A study of the underpotential deposition of lead on gold by UV-visible differential reflectance spectroscopy, J. Braz. Chem. Soc., 1998, vol. 9, no. 1, pp. 31–38.

    Article  CAS  Google Scholar 

  20. Adžić, R., Yeager, E., and Cahan, B.D., Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes, J. Electrochem. Soc., 1974, vol. 121, no. 4, pp. 474–484.

    Article  Google Scholar 

  21. Swathirajan, S., Mizota, H., and Bruckenstein, S., Thermodynamic properties of monolayers of silver and lead deposited on polycrystalline gold in the underpotential region, J. Phys. Chem., 1982, vol. 86, no. 13, pp. 2480–2485.

    Article  CAS  Google Scholar 

  22. Sudha, V., and Sangaranarayanan, M.V., Underpotential deposition of metals–Progress and prospects in modeling, J. Chem. Sci., 2005, vol. 117, no. 3, pp. 207–218.

    Article  CAS  Google Scholar 

  23. Rojas, M.I., Dassie, S.A., and Leiva, E.P.M., Theoretical study about the adsorption of lead on (111), (100), (110) monocrystalline surfaces of gold, Z. Phys. Chem., 1994, vol. 185, no. 1, pp. 33–50.

    Article  CAS  Google Scholar 

  24. Pershina, V., Anton, J., and Fricke, B., Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM', where M = Ge, Sn, Pb, and element 114, and M' = Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114, J. Chem. Phys., 2007, vol. 127, no. 13, p. 134310.

    CAS  PubMed  Google Scholar 

  25. Pershina, V., Anton, J., and Jacob, T., Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb, J. Chem. Phys., 2009, vol. 131, no. 8, p. 084713.

    Article  CAS  PubMed  Google Scholar 

  26. Zaitsevskii, A., van Wüllen, C., Rykova, E.A., and Titov, A.V., Two-component relativistic density functional theory modeling of the adsorption of element 114(eka-lead) on gold, Phys. Chem. Chem. Phys., 2010, vol. 12, no. 16, pp. 4152–4156.

    CAS  Google Scholar 

  27. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, no. 11, pp. 1347–1363.

    Article  CAS  Google Scholar 

  28. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001.

    Book  Google Scholar 

  29. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652.

    Article  CAS  Google Scholar 

  30. Stephens, P.J, Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, no. 45, pp. 11623–11627.

    Article  CAS  Google Scholar 

  31. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol, 82, no. 1, pp. 299–310.

    Article  Google Scholar 

  32. McLean, A.D. and Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18, J. Chem. Phys., 1980, vol. 72, no. 10, pp. 5639–5648.

    CAS  Google Scholar 

  33. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, vol. 72, no. 1, pp. 650–654.

    Article  CAS  Google Scholar 

  34. Leach, A.R., Molecular Modeling: Principles and Applications, Harlow: Pearson Education, 2001.

    Google Scholar 

  35. Löwdin, P.-O., On the nonorthogonality problem, Adv. Quantum Chem., 1970, vol. 5, pp. 185–199.

    Article  Google Scholar 

  36. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.

    Google Scholar 

  37. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, no. 4, pp. 1291–1306.

    Article  CAS  PubMed  Google Scholar 

  38. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998.

    Google Scholar 

  39. Barone, V., Cossi, M., and Tomasi, J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, vol. 107, no. 8, pp. 3210–3221.

    Article  CAS  Google Scholar 

  40. Barone, V. and Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A., 1998, vol. 102, no. 11, pp. 1995–2001.

    Article  CAS  Google Scholar 

  41. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 2003, vol. 24, no. 6, pp. 669–681.

    Article  CAS  PubMed  Google Scholar 

  42. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, no. 4, pp. 553–566.

    Article  CAS  Google Scholar 

  43. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007.

    Google Scholar 

  44. Nazmutdinov, R.R., Manyurov, I.R., Zinkicheva, T.T., Jang, J., and Ulstrup, J., Cysteine adsorption on the Au(111) surface and the electron transfer in configuration of a scanning tunneling microscope: a quantumchemical approach, Russ. J. Electrochem., 2007, vol. 43, no. 3, pp. 328–341.

    Article  CAS  Google Scholar 

  45. Tang, H.-R., Wang, W.-N., Li, Z.-H., Dai, W.-L., Fan, K.-N., and Deng, J.-F., Chemisorption of iodine on Ag(110): a density-functional theory approach, Surf. Sci., 2000, vol. 450, nos. 1–2, pp. 133–141.

    Article  CAS  Google Scholar 

  46. Yoon, B., Koskinen, P., Huber, B., Kostko, O., von Issendorff, B., Häkkinen, H., Moseler, M., and Landman, U., Size-Dependent Structural Evolution and Chemical Reactivity of Gold Clusters, Chem. Phys. Chem., 2007, vol. 8, no. 1, pp. 157–161.

    CAS  Google Scholar 

  47. Strømsnes, H., Jusuf, S., Bagatur’yants, A., Gropen, O., and Wahlgren, U., Model studies of the chemisorption of hydrogen and oxygen on the Au(100) surface, Theor. Chem. Acc., 2001, vol. 106, no. 5, pp. 329–338.

    Article  Google Scholar 

  48. Muther, B., Eichler, R., and Gäggeler, H. W., Thermochormatography of 212Pb and 200–202Tl on Quartz and Gold, PSI Annual Report 2007, Bern: Paul Scherrer Institut, 2008.

    Google Scholar 

  49. Sellers, H., Patrito, E.M., and Olivera, P.P., Thermodynamic and ab initio calculations of chemisorption energies of ions, Surf. Sci., 1996, vol. 356, nos. 1–3, pp. 222–232.

    Article  CAS  Google Scholar 

  50. Markovits, A., García-Hernández, M., Ricart, J.M., and Illas, F., Theoretical study of bonding of carbon trioxide and carbonate on Pt(111): relevance to the interpretation of “in situ” vibrational spectroscopy, J. Phys. Chem. B, 1999, vol. 103, no. 3, pp. 509–518.

    Article  CAS  Google Scholar 

  51. Ample, F., Clotet, A., and Ricart, J.M., Structure and bonding mechanism of cyanide adsorbed on Pt(111), Surf. Sci., 2004, vol. 558, nos. 1–3, pp. 111–121.

    Article  CAS  Google Scholar 

  52. Nazmutdinov, R.R., Zinkicheva, T.T., Probst, M., Lust, K., and Lust, E., Adsorption of halide ions from aqueous solutions at a Cd(0001) electrode surface: quantum chemical modelling and experimental study, Surf. Sci., 2005, vol. 577, nos. 2–3, pp. 112–126.

    Article  CAS  Google Scholar 

  53. Liu, S., Ishimoto, T., and Koyama, M., First-principles calculation of OH–/OH adsorption on gold nanoparticles, Int. J. Quantum Chem., 2015, vol. 115, no. 22, pp. 1597–1605.

    Article  CAS  Google Scholar 

  54. Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998, vol. 1.

  55. O’Boyle, N.M., Tenderholt, A.L., and Langner, K.M., CCLIB: a library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, no. 5, pp. 839–845.

    Article  PubMed  CAS  Google Scholar 

  56. Bligaard, T., and Nørskov, J.K., Heterogeneous catalysis, in Chemical Bonding Surfaces and Interfaces, Nilsson, A., Petersson, L.G.M., and Nørskov, J.K., Eds., Amsterdam: Elsevier, 2008, ch. 4, pp. 255–322.

    Google Scholar 

  57. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 1996, vol. 100, no. 40, pp. 16385–16398.

    Article  CAS  Google Scholar 

  58. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., Explicitly representing the solvation shell in continuum solvent calculations, J. Phys. Chem. A, 2009, vol. 113, no. 22, pp. 6404–6409.

    Google Scholar 

  59. Desnoyers, J.E. and Jolicoeur, C., Hydration effects and thermodynamic properties of ions, in Modern Aspects of Electrochemistry, Bockris, J.O’M. and Conway, B.E., Eds., New York: Plenum Press, 1969, vol. 5, ch. 1, p. 26.

    Google Scholar 

  60. Robinson, R.A. and Stokes, R.H., Electrolyte solutions, London: Butterworths, 1959.

    Google Scholar 

  61. Marcus, Y., Thermodynamics of solvation of ions. Part 5–Gibbs free energy of hydration at 298.15K, J. Chem. Soc., Faraday Trans., 1991, vol. 87, no. 18, pp. 2995–2999.

    Article  CAS  Google Scholar 

  62. Bondi, A., Van der Waals volumes and radii, J. Phys. Chem., 1964, vol. 68, no. 3, pp. 441–451.

    Article  CAS  Google Scholar 

  63. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjöberg, S., and Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH–, Cl–, and systems (IUPAC Technical Report), Pure Appl. Chem., 2009, vol. 81, no. 12, pp. 2425–2476.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Rogozhnikov.

Additional information

Original Russian Text © N.A. Rogozhnikov, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 1, pp. 60–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhnikov, N.A. Quantum-Chemical Study of the Adsorption of Pb2+ on Au(111). Russ J Electrochem 54, 902–911 (2018). https://doi.org/10.1134/S1023193518130359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130359

Keywords

Navigation