Skip to main content
Log in

Electrochemical Properties of Overoxidized Poly-3,4-Ethylenedioxythiophene

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The properties of poly(3,4-ethylenedioxythiophene) (PEDOT) films were studied electrochemically at high positive potentials (from–0.3 to 1.5 V relative to the Ag/AgCl electrode). A cyclic voltammetry (CV) study revealed the range of potentials (up to 1.3–1.5 V) where the cycling leads to significant changes in the electrochemical, structural, and morphological properties of the polymer film due to overoxidation. When the upper cycling potential Eup exceeded 1.4 V, the anodic current significantly increased during the first cycle and then decreased, which suggests a loss of the electroactivity of the polymer and degradation of its properties. In the high-frequency region of the impedance spectra of the PEDOT films, a semicircle appears after overoxidation, which indicates a notable increase of the charge transfer resistance in the system, in contrast to the films subjected to potentiodymanic processing in a limited range of potentials from–0.3 to 1.3 V. The effect of overoxidation on the polymer morphology was studied by scanning electron microscopy. The chemical state of elements in the structure of the polymer film was determined by X-ray photoelectron spectroscopy. The obtained data indicate that–S=O groups formed at the thiophene sulfur in the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tourillon, G., in Handbook of Conducting Polymers, Skotheim, T.A., Ed., New York: Marcel Dekker, 1986.

    Google Scholar 

  2. Heinze, J. Electronically Conducting Polymers, in Top. Curr. Chem., vol. 152, Springer, 1990, p. 1.

    Book  Google Scholar 

  3. Roncali, J., Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications, Chem. Rev. (Washington, DC, U.S.), 1992. doi 10.1021/Cr00012a009

    Google Scholar 

  4. Inzelt, G., Pineri, M., Schultze, J.W., and Vorotyntsev, M.A., Electron and proton conducting polymers: recent developments and prospects, Electrochim. Acta, 2000, vol. 45, p. 1016. doi 10.1016/S0013-4686(00)00329-7

    Google Scholar 

  5. Novak, P., Muller, K., Santhanam, K.S.V., and Haas, O., Electrochemically active polymers for rechargeable batteries, Chem. Rev. (Washington, DC, U. S.), 1997. doi 10.1021/Cr941181o

    Google Scholar 

  6. Inzelt, G., Conducting Polymers: A New Era in Electrochemistry, Berlin: Springer, 2008.

    Google Scholar 

  7. Inzelt, G., Rise and rise of conducting polymers, J. Solid State Electrochem., 2011, vol. 15, p. 1007. doi 10.1007/s10008-011-1338-3

    Article  CAS  Google Scholar 

  8. Holze, R. and Wu, Y.P., Intrinsically conducting polymers in electrochemical energy technology: Trends and progress, Electrochim. Acta, 2014, vol. 122, p. 1016. doi 10.1016/j.electacta.2013.08.100

    Article  CAS  Google Scholar 

  9. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Adv. Mater., 2000, vol. 12, p. 481. doi 10.1002/(sici)1521-4095(200004)12:7<481::aid-adma481>3.0.co;2-c

    CAS  Google Scholar 

  10. Murugan, A.V., Kwon, C.W., Campet, G., Kale, B.B., Maddanimath, T., and Vijayamohanan, K., Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene) PEDOT/V2O5 nanocomposite, J. Power Sources, 2002, vol. 105, p. 1. doi 10.1016/s0378-7753(01)00992-2

    Article  CAS  Google Scholar 

  11. Arbizzani, C., Balducci, A., Mastragostino, M., Rossi, M., and Soavi, F., Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries, J. Electroanal. Chem., 2003, vol. 553, p. 125. doi 10.1016/S0022-0728(03)00305-X

    Article  CAS  Google Scholar 

  12. Murugan, A.V., Viswanath, A.K., Campet, G., Gopinath, C.S., and Vijayamohanan, K., Enhancement of double-layer capacitance behavior and its electrical conductivity in layered poly(3,4-ethylenedioxythiophene)-based nanocomposites, Appl. Phys. Lett., 2005, vol. 87. doi 10.1063/1.2140468

    Google Scholar 

  13. Murugan, A.V., Novel organic-inorganic poly(3,4-ethylenedioxythiophene) based nanohybrid materials for rechargeable lithium batteries and supercapacitors, J. Power Sources, 2006, vol. 159, p. 312. doi 10.1016/j.jpowsour.2006.04.033

    Article  CAS  Google Scholar 

  14. Zhan, L.Z., Song, Z.P., Zhang, J.Y., Tang, J., Zhan, H., Zhou, Y.H., and Zhan, C.M., PEDOT: Cathode active material with high specific capacity in novel electrolyte system, Electrochim. Acta, 2008, vol. 53, p. 1016. doi 10.1016/j.electacta.2008.06.053

    Article  CAS  Google Scholar 

  15. Lei, C.H., Wilson, P., and Lekakou, C., Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors, J. Power Sources, 2011, vol. 196, p. 7823. doi 10.1016/j.jpowsour.2011.03.070

    Article  CAS  Google Scholar 

  16. Fabre-Francke, I., Aubert, P.H., Alfonsi, S., Vidal, F., Sauques, L., and Chevrot, C., Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices, Sol. Energy Mater. Sol. Cells, 2012, vol. 99, p. 109. doi 10.1016/j.solmat. 2011.07.004

    Article  CAS  Google Scholar 

  17. Hong, S.F. and Chen, L.C., Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows, Sol. Energy Mater. Sol. Cells, 2012, vol. 104, p. 1016. doi 10.1016/j.solmat.2012.04.032

    Article  CAS  Google Scholar 

  18. Romyen, N., Thongyai, S., Praserthdam, P., and Sotzing, G.A., Enhancement of poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application, J. Mater. Sci.: Mater. Electron., 2013, vol. 24, p. 2897. doi 10.1007/s10854-013-1188-0

    CAS  Google Scholar 

  19. Trinh, N.D., Saulnier, M., Lepage, D., and Schougaard, S.B., Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries, J. Power Sources, 2013, vol. 221, p. 284. doi 10.1016/j.jpowsour.2012.08.006

    Article  CAS  Google Scholar 

  20. Kim, J., Park, H.S., Kim, T.H., Kim, S.Y., and Song, H.K., An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 1039. doi 10.1039/C3cp54624a

    Google Scholar 

  21. Wang, X., Shen, L., Li, H., Wang, J., Dou, H., and Zhang, X., PEDOT coated Li4 Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties, Electrochim. Acta, 2014, vol. 129, p. 283. doi 10.1016/j.electacta.2014.02.112

    Article  CAS  Google Scholar 

  22. Cintora-Juarez, D., Perez-Vicente, C., Kazim, S., Ahmad, S., and Tirado, J.L., Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries, J. Mater. Chem. A, 2015, vol. 3, p. 14254. doi 10.1039/c5ta03542b

    Article  CAS  Google Scholar 

  23. Das, P.R., Komsiyska, L., Osters, O., and Wittstock, G., PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. 1149. doi 10.1149/2.0581504jes

    Article  CAS  Google Scholar 

  24. Eliseeva, S.N., Levin, O.V., Tolstopjatova, E.G., Alekseeva, E.V., Apraksin, R.V., and Kondratiev, V.V., New functional conducting poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethycellulose binder for improvement of capacity of LiFePO4-based cathode materials, Mater. Lett., 2015, vol. 161, p. 117. doi 10.1016/j.matlet.2015.08.078

    Article  CAS  Google Scholar 

  25. Eliseeva, S.N., Levin, O.V., Tolstopyatova, E.G., Alekseeva, E.V., and Kondratiev, V.V., Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries, Russ. J. Appl. Chem., 2015, vol. 88, p. 1146. doi 10.1134/S1070427215070071

    Article  CAS  Google Scholar 

  26. Lee, J. and Choi, W., Surface Modification of Over-Lithiated Layered Oxides with PEDOT:PSS Conducting Polymer in Lithium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. 1149. doi 10.1149/2.0801504jes

    Google Scholar 

  27. Smolin, A.M., Novoselov, N.P., Babkova, T.A., Eliseeva, S.N., and Kondrat’ev, V.V., Use of composite films based on poly(3,4-ethylenedioxythiophene) with inclusions of palladium nanoparticles in voltammetric sensors for hydrogen peroxide, J. Anal. Chem., 2015, vol. 70, p. 967. doi 10.1134/S1061934815080171

    Article  CAS  Google Scholar 

  28. Tolstopjatova, E.G., Eliseeva, S.N., Nizhegorodova, A.O., and Kondratiev, V.V., Electrochemical Properties of Composite Electrodes, Prepared by Spontaneous Deposition of Manganese Oxide into Poly-3,4-ethylenedioxythiophene, Electrochim. Acta, 2015, vol. 173, p. 40. doi 10.1016/j.electacta/2015.05.033

    CAS  Google Scholar 

  29. Zykwinska, A., Domagala, W., Pilawa, B., and Lapkowski, M., Electrochemical overoxidation of poly(3,4-ethylenedioxythiophene)—PEDOT studied by means of in situ ESR spectroelectrochemistry, Electrochim. Acta, 2005, vol. 50, p. 1625. doi 10.1016/j.electacta. 2004.10.026

    Article  CAS  Google Scholar 

  30. Ujvári, M., Takacs, M., Vesztergom, S., Bazso, F., Ujhelyi, F., and Láng, G.G., Monitoring of the electrochemical degradation of PEDOT films on gold using the bending beam method, J. Solid State Electrochem., 2011, vol. 15, p. 1007. doi 10.1007/s10008-011-1472-y

    Article  CAS  Google Scholar 

  31. Láng, G.G., Ujvári, M., Bazso, F., Vesztergom, S., and Ujhelyi, F., In situ monitoring of the electrochemical degradation of polymer films on metals using the bending beam method and impedance spectroscopy, Electrochim. Acta, 2012, vol. 73, p. 1016. doi 10.1016/j.electacta. 2012.01.068

    Article  CAS  Google Scholar 

  32. Ujvári, M., Zalka, D., Vesztergom, S., Eliseeva, S., Kondratiev, V., and Láng, G.G., Electrochemical impedance measurements in non-stationary systems: application of the 4-dimensional analysis method for the impedance analysis of overoxidized poly(3,4-ethylenedioxythiophene)-modified electrodes, Bulg. Chem. Commun., 2017, vol. 49, p. 106.

    Google Scholar 

  33. Ujvári, M., Gubicza, J., Kondratiev, V., Szekeres, K.J., and Láng, G.G., Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation, J. Solid State Electrochem., 2015, vol. 19, p. 1247. doi 10.1007/s10008-015-2746-6

    Article  CAS  Google Scholar 

  34. Láng, G.G., Ujvári, M., Vesztergom, S., Kondratiev, V., Gubicza, J., and Szekeres, K.J., The Electrochemical Degradation of Poly(3,4-ethylenedioxythiophene) Films Electrodeposited from Aqueous Solutions, Z. Phys. Chem., 2016, vol. 230, p. 1281. doi 10.1515/zpch-2016-0752

    Article  CAS  Google Scholar 

  35. Zhuzhel’skii, D.V., Yalda, K.D., Spiridonov, V.N., Eliseeva, S.N., and Kondratiev, V.V., Electrochemical deposition of molybdenum oxide into films of poly(3,4-ethylenedioxythiophene) conducting polymer on glassy carbon substrates, Russ. J. Appl. Chem., 2016, vol. 89, p. 1252. doi 10.1134/s1070427216080061

    Article  CAS  Google Scholar 

  36. Kondratiev, V.V., Malev, V.V., and Eliseeva, S.N., Composite electrode materials based on conducting polymers loaded with metal nanostructures, Russ. Chem. Rev., 2016, vol. 85, p. 1070. doi 10.1070/rcr4509

    Article  CAS  Google Scholar 

  37. Fall, M., Diagne, A.A., Dieng, M.M., Deflorian, F., Rossi, S., Bonora, P.L., Volpe, C.D., and Aaron, J.J., Electrochemical impedance spectroscopy of poly(3-methoxythiophene) thin films in aqueous LiClO4 solutions, Synth. Met., 2005, vol. 155, p. 569. doi 10.1016/j.synthmet.2005.09.043

    Article  CAS  Google Scholar 

  38. Refaey, S.A.M., Electrochemical impedance studies on the electrochemical properties of poly(3-methylthiophene) in aqueous solutions, Synth. Met., 2004, vol. 140, p. 87. doi 10.1016/s0379-6779(03)00357-6

    Article  CAS  Google Scholar 

  39. Greczynski, G., Kugler, T., Keil, M., Osikowicz, W., and Fahlman, M., and Salaneck, W.R., Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results, J. Electron Spectrosc. Relat. Phenom., 2001, vol. 121, p. 1016. doi 10.1016/s0368-2048(01)00323-1

    Article  Google Scholar 

  40. King, Z.A., Shaw, C.M., Spanninga, S.A., and Martin, D.C., Structural, chemical and electrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments, Polymer, 2011, vol. 52, p. 1302. doi 10.1016/j.polymer.2011.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Eliseeva.

Additional information

Original Russian Text © M.A. Kamensky, S.N. Eliseeva, G. Láng, M. Ujvári, V.V. Kondratiev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 10S, pp. S70–S80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamensky, M.A., Eliseeva, S.N., Láng, G. et al. Electrochemical Properties of Overoxidized Poly-3,4-Ethylenedioxythiophene. Russ J Electrochem 54, 893–901 (2018). https://doi.org/10.1134/S1023193518130219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130219

Keywords

Navigation