Skip to main content
Log in

Computer Simulation of an Electrode of Lithium-Ion Battery: Estimation of Ohmic Losses for Active-Material Grains Covered by a Conducting Film

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The use of active materials with high resistivity in lithium-ion batteries necessitates covering the surface of active particles with electron-conducting films. If this measure is insufficient, then carbon black is added to the electrode active layer. The ohmic losses are assessed by computer simulation of electrode’s active layers with active grains covered by a carbon film. Electrode’s active layer is modeled as a set of equal-sized cubic grains of the active material (covered with a conducting film) and the electrolyte; the grains are randomly distributed throughout the active layer. It is shown how the effective conductivity of the active layer decreases in this case. Furthermore, account is taken of the fact that carbon films represent a set of islets, which results in an additional decrease in the effective conductivity of the active layer. By computer simulations in combination with the percolation theory, it is found how the addition of carbon black can increase the conductivity of electrode’s active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Julien, Ch., Mauger, A., Vijh, A., and Zaghib, K., Lithium Batteries. Science and Technology, Heidelberg: Springer, 2016.

    Book  Google Scholar 

  2. Huang, H., Yin, S.C., and Nazar, L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid State Lett., 2001, vol. 4, p. A170.

    Google Scholar 

  3. Kostecki, R., Schnyder, B., Alliata, D., Song, X., Kinoshita, K., and Kotz, R., Surface studies of carbon films from pyrolyzed photoresist, Thin Solid Films, 2001. vol. 396. p. 36.

    Google Scholar 

  4. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., and Armand, M., Electroactivity of natural and synthetic triphylite, J. Power Sources, 2001, vol. 97, p. 503.

    Article  Google Scholar 

  5. Jung, H.-G, Kim, J., Scrosati, B., and Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, vol. 196, p. 7763.

    Article  CAS  Google Scholar 

  6. Ding, Y., Jiang, Y., Xu, F., Yin, J., Ren, H., Zhuo, Q., Long, Z., and Zhang, P., Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method, Electrochem. Comm., 2010, vol. 12, p. 10.

    Article  CAS  Google Scholar 

  7. Huang, Y.-G., Zheng, F.-H., Zhang, X.-H., Li, Q.-Y., and Wang, H.-Q., Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source, Electrochim. Acta, 2014, vol. 130, p. 740.

    Article  CAS  Google Scholar 

  8. Hong, S. A., Kim, D. H., Chung, K. Y., Chang, W., Yoo, J., and Kim, J., Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance, J. Power Sources, 2014, vol. 262, p. 219.

    Article  CAS  Google Scholar 

  9. Wang, J. and Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 5163.

    Article  CAS  Google Scholar 

  10. Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, p. A207.

    Google Scholar 

  11. Swain, P., Viji, M., Mocherla, P.S.V., and Sudakar, C., Carbon coating on the current collector and LiFePO4 nanoparticles—Influence of sp2 and sp3-like disordered carbon on the electrochemical properties, J. Power Sources, 2015, vol. 293, p. 613.

    Article  CAS  Google Scholar 

  12. Fan, Q., Lei, L., Chen, Y., and Sun, Y., Biotemplated synthesis of LiFePO4/C matrixes for the conductive agent-free cathode of lithium ion batteries, J. Power Sources, 2013, vol. 244, p. 702.

    Article  CAS  Google Scholar 

  13. Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., and Thackeray, M.M., Studies of Mg-substituted Li4–xMgxTi5O12 spinel electrodes (0 < x < 1) for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, p. A102.

    Google Scholar 

  14. Prosini, P.P., Mancini, R., Petrucci, L., Contini, V., and Villano, P., Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 2001, vol. 144, p. 185.

    Article  CAS  Google Scholar 

  15. Wolfenstine, J., Lee, U., and Allen, J.L., Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere, J. Power Sources. 2006, vol. 154, p. 287.

    Google Scholar 

  16. Hu, X., Lin, Z., Yang, K., Huai, Y., and Deng, Z., Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction, Electrochim. Acta., 2001, vol. 56, p. 5046.

    Article  CAS  Google Scholar 

  17. Chung, S.-Y., Bloking, J.T., and Chiang, Y.-M., Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002, vol. 1, p. 123.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao, Ch., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.

    Article  CAS  Google Scholar 

  19. Yuan, T., Yu, X., Cai, R., Zhou, Y., and Shao, Z., Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance, J. Power Sources, 2010, vol. 195, p. 4997.

    Article  CAS  Google Scholar 

  20. Jung, H.-G., Kim, J., Scrosati, and Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, vol. 196, p. 7763.

    CAS  Google Scholar 

  21. Oh, J., Lee, J., Hwang, T., Kim, J.M., Seoung, K.-D., and Piao, Y., Dual layer coating strategy utilizing Ndoped carbon and reduced graphene oxide for highperformance LiFePO4 cathode material, Electrochim. Acta, 2017, vol. 231, p. 85.

    Article  CAS  Google Scholar 

  22. Tu, X., Zhou, Y., Tian, X., Song, Y., Deng, Ch., and Zhu, H., Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries, Electrochim. Acta, 2016, vol. 222, p. 64.

    Article  CAS  Google Scholar 

  23. Tao, Sh., Huang, W., Wu, G., Zhu, X., Wang, X., Zhang, M., Wang, Sh., Chu, W., Song, L., and Wu, Z., Performance enhancement of lithium-ion battery with LiFePO4@C/RGO hybrid electrode, Electrochim. Acta, 2014, vol. 144, p. 406.

    Article  CAS  Google Scholar 

  24. He, Y.-B., Ning, F., Li, B., Song, Q.-Sh., Lv, W., Du, H., Zhai, D., Su, F., Yang, Q.-H., and Kang, F., Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode, J. Power Sources, 2012, vol. 202, p. 253.

    Article  CAS  Google Scholar 

  25. Guo, X., Wang, Ch., Chen, M., Wang, J., and Zheng, J., Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance, J. Power Sources, 2012, vol. 214, p. 107.

    Article  CAS  Google Scholar 

  26. Fang, W., Zuo, P., Ma, Y., Cheng, X., Liao, L., and Yin, G., Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery, Electrochim. Acta, 2013, vol. 94, p. 294.

    Article  CAS  Google Scholar 

  27. Qin, G., Wu, Q., Zhao, J., Ma, Q., and Wang, Ch., C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries, J. Power Sources, 2014, vol. 248, p. 588.

    Article  CAS  Google Scholar 

  28. Miao, C., Bai, P. Jiang, Q., Sun, Sh., and Wang, X., A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery, J. Power Sources, 2014, vol. 246, p. 232.

    Article  CAS  Google Scholar 

  29. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer modeling of negative electrode operation in lithium-ion battery: Model of equal-sized grains, galvanostatic discharge mode, calculation of characteristic parameters, Russ. J. Electrochem., 2011, vol. 47, p. 59.

    Article  CAS  Google Scholar 

  30. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer modeling of positive electrode operation in lithium-ion battery: Model of equal-sized grains, percolation calculations, Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  CAS  Google Scholar 

  31. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer simulation of positive electrode operation in lithium-ion battery: Optimization of active mass composition, Russ. J. Electrochem., 2012, vol. 48, p. 895.

    Article  CAS  Google Scholar 

  32. Chirkov, Yu.G., Porous electrodes in electrochemical technologies, Al’tern. Energ. Ecol., 2014, no. 9, p. 55 [in Russian].

    Google Scholar 

  33. Skundin, A.M., Chirkov, Yu.G., and Rostokin, V.I., Lithium-ion batteries: Computer simulation and problems of capacity dependences on charge/discharge currents, Al’tern. Energ. Ecol., 2014, no. 13, p. 80 [in Russian].

    Google Scholar 

  34. Tarasevich, Yu.Yu., Perkolyatsiys: teoriya, prilozheniyz, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2011 [in Russian].

    Google Scholar 

  35. Chirkov, Yu.G., The theory of porous electrodes: percolation, calculation of percolation lines, Russ. J. Electrochem., 1999, vol. 35, p. 1281.

    CAS  Google Scholar 

  36. Kirkpatrick, S., Percolation and conduction, Rev. Mod. Phys., 1973, vol. 45, p. 574.

    Article  Google Scholar 

  37. Stauffer, D., Scaling theory of percolation clusters, Phys. Reports, 1979, vol. 54, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skundin.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, A.M. Skundin, T.L. Kulova, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 11, pp. 966–975.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, Y.G., Rostokin, V.I., Skundin, A.M. et al. Computer Simulation of an Electrode of Lithium-Ion Battery: Estimation of Ohmic Losses for Active-Material Grains Covered by a Conducting Film. Russ J Electrochem 54, 970–978 (2018). https://doi.org/10.1134/S1023193518130098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130098

Keywords

Navigation