Skip to main content
Log in

Electrochemical Behavior of an Anti-Viral Drug Valacyclovir at Carbon Paste Electrode and Its Analytical Application

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Valacyclovir (VCH) is an antiviral drug, used in the management of viral infections such as herpes simplex and varicella-zoster in humans. It is rapidly converted to acyclovir which has antiviral activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) and Varicella-zoster virus (VZV) both in vitro and in vivo. Electrochemical behavior was studied using cyclic voltammetric method, and the analytical application was studied using differential pulse voltammetric technique. The process on the surface of electrode was found to be irreversible and diffusion controlled. The charge transfer coefficient, heterogeneous rate constant, the number of electron transferred and activation parameters were calculated. Possible free radical reaction mechanism taking place on the surface of electrode was proposed. Calibration plot constructed using differential pulse voltammetric technique and applied for quantitative analysis in pharmaceutical and human urine sample. Limit of detection (LOD) and limit of quantification (LOQ) were calculated and found to be 0.028 and 0.09 μM, respectively. The present work describes the electrochemical behavior of an antiviral drug, VCH and its determination in pharmaceutical samples. The method shows the development of a sensor for selective and sensitive determination of VCH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beauchamp, L.M. and Krenitsky, T.A., Acyclovir prodrugs the road to valacyclovir, Drugs Future, 1993, vol. 18, p. 619.

    Article  Google Scholar 

  2. Beutner, K.R., Valacyclovir: a review of its antiviral activity, pharmacokinetic properties, and clinical efficacy, Antiviral Res., 1995, vol. 28, p. 281.

    Article  CAS  PubMed  Google Scholar 

  3. Bengi, U., Sibel, A., and Zkana, O., Electro-oxidation of the antiviral drug valacyclovir and its square-wave and differential pulse voltammetric determination in pharmaceuticals and human biological fluids, Anal. Chem. Acta, 2006, vol.555, p. 341.

    Article  CAS  Google Scholar 

  4. Kasiari, M., Evagelos, G., Georgakakou, S., Kazanis, M., and Panderi, I., Selective and rapid liquid chromatography/negative-ion electro spray ionization mass spectrometry method for the quantification of valacyclovir and its metabolite in human plasma, J. Chromatogr., 2008, vol. 864, p.78.

    Google Scholar 

  5. Ravi, K., Ramadass, R.J., Aravinda Raj, R., and Parloop, A., An LC–MS–MS method for the simultaneous quantitation of acyclovir and valacyclovir in human plasma, Chromatographia, 2009, vol. 70, p. 407.

    Google Scholar 

  6. Gerda, M., Friedrichsen, W.C., Mikael, B., Chao-Pin, L., and Philip, L.S., Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells, Eur. J. Pharm. Sci., 2002, vol. 16, p. 1.

    Article  Google Scholar 

  7. Patil, G.D., Yeole, P.G., Puranik, M., and Wadher, S.J., A validated specific reverse phase liquid chromatographic, method for the determination of valacyclovir in the presence of its degradation products in bulk drug and in tablet dosage form, Int. J. Chem. Technol. Res., 2009, vol. 1, p. 16.

    CAS  Google Scholar 

  8. Jadhav, A.S., Pathare, D.B., and Shingare, M.S., Development and validation of enantioselective high performance liquid chromatographic method for Valacyclovir, an antiviral drug in drug substance, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1568.

    Article  CAS  PubMed  Google Scholar 

  9. Shetti, N.P., Malode, S.J., and Nandibewoor, S.T., Electrochemical behavior of an antiviral drug acyclovir at fullerene-C 60-modified glassy carbon electrode, Bioelectrochemistry, 2012, vol. 88, p. 76.

    Article  CAS  PubMed  Google Scholar 

  10. Shetti, N.P., Nayak, D.S., Malode, S.J., and Kulkarni, R.M., Electrochemical sensor based upon ruthenium doped TiO2 nanoparticles for the determination of flufenamic acid, J. Electrochem. Soc., 2017, vol. 164, no. 5, p. 3036.

    Article  CAS  Google Scholar 

  11. Genxi, L. and Peng, M., Theoretical Background of Electrochemical Analysis Electrochemical Analysis of Proteins and Cells, Berlin, Heidelberg: Springer, 2013.

    Google Scholar 

  12. Khoobi, A., Ghoreishi, S.M., Masoum, S., and Behpour, M., Multivariate curve resolution-alternating least squares assisted by voltammetry for simultaneous determination of betaxolol and atenolol using carbon nanotube paste electrode, Bioelectrochemistry, 2013 vol. 94, p. 100.

    Google Scholar 

  13. Mokhtari, A., Karimi-Maleh, H., Ensafi, A.A., and Beitollahi, H., Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples, Sens. Actuators, B, 2012, vol. 169, p. 96.

    Article  CAS  Google Scholar 

  14. Diaz, C., Garcia, C., Iturriaga-Vasquez, P., Aguirre, J.M., Muena, J.P., Contreras, R., Ormazabal-Toledo, R., and Isaacs, M., Experimental and theoretical study on the oxidation mechanism of dopamine in n-octyl pyridinium based ionic liquids–carbon paste modified electrode, Electrochim. Acta, 2013, vol. 111, p. 846.

    Article  CAS  Google Scholar 

  15. Gholivand, M.B. and Mohammadi, B.L., Fabrication of a highly sensitive sumatriptan sensor based on ultrasonic-electrodeposition of Pt nanoparticles on the ZrO2 nanoparticles modified carbon paste, J. Electroanal. Chem., 2014, vol. 712, p. 33.

    Article  CAS  Google Scholar 

  16. Mazloum, A.M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., and Abdollahi-Alibeik, M., New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon, Sens. Actuators, B, 2010, vol. 151, p. 243.

    Article  CAS  Google Scholar 

  17. Raoof, J.B., Ojani, R., and Beitollahi, H., L-cysteine voltammetry at a carbon paste electrode bulk-modified with ferrocenedi carboxylic acid, Electroanalysis, 2007, vol. 19, p. 1822.

    Article  CAS  Google Scholar 

  18. Christian, G.D. and Purdy, W.C., The residual current in orthophosphate medium, J. Electroanal. Chem., 1962, vol. 3, p. 363.

    CAS  Google Scholar 

  19. Bukkitgar, S.D. and Shetti, N.P., Electrochemical behavior of anticancer drug 5-fluorouracil at carbon paste electrode and its analytical application, J. Anal. Sci. Technol., 2016, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  20. Nayak, D.S. and Shetti, N.P., Electro-oxidation of a food dye fast green FCF and its analytical applications, Anal. Bioanal. Electrochem., 2016, vol. 8, p. 38.

    CAS  Google Scholar 

  21. Shetti, N.P., Malode, S.J., and Nandibewoor, S.T., Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids, Anal. Methods, 2015, vol. 7, p. 8673.

    Article  CAS  Google Scholar 

  22. Nayak, D.S. and Shetti, N.P., Voltammetric response and determination of an anti-inflammatory drug at a cationic surfactant-modified glassy carbon electrode, J. Surfactants Deterg., 2016, vol. 19, no. 5, p. 1071.

    Article  CAS  Google Scholar 

  23. Bukkitgar, S.D. and Shetti, N.P., Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode, Mater. Sci. Eng., 2016, vol. 65, p. 262.

    Article  CAS  Google Scholar 

  24. Nayak, D.S. and N.P., A novel sensor for a food dye erythrosine at glucose modified electrode, Sens. Actuators, B, 2016, vol. 230, p. 140.

    Article  CAS  Google Scholar 

  25. Devarushi, U.S., Shetti, N.P., Tuwar Suresh, M., and Seetharamappa, J., Electrochemical oxidation and thermodynamic parameters for an anti-viral drug valacyclovir, Anal. Bioanal. Electrochem., 2017, vol. 9, p. 102.

    CAS  Google Scholar 

  26. Nayak, D.S. and Shetti, N.P., Electrochemical oxidation of provitamin B 5, d-panthenol and its analysis in spiked human urine, J. Anal. Sci. Technol., 2016, vol. 7, no. 1, p. 1.

    Article  CAS  Google Scholar 

  27. Topal, B.D., Palabiyir, B.B., Uslu, B., and Ozkan, S.A., Multiwalled carbon nanotutes modified glassy carbon electrode as voltammetric sensor for sensitive determination of anti viral drug valganciclovir in pharmaceuticals, Sens. Actuators, B, 2013, vol. 177, p. 841.

    Article  CAS  Google Scholar 

  28. Hegde, R.N., Kumara Swamy, B.E., Shetti, N.P., and Nandibewoor, S.T., Electro-oxidation and determination of gabapentin at gold electrode, J. Electroanal. Chem., 2009, vol. 635, p. 51.

    CAS  Google Scholar 

  29. Jain, R. and Rather, J.A., Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode, Colloids Surf., B, 2011, vol. 83, p. 340.

    Article  CAS  Google Scholar 

  30. Bukkitgar, S.D. and Shetti, N.P., Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode, ChemistrySelect, 2016, vol. 1, no. 4, p. 771.

    Article  CAS  Google Scholar 

  31. Kolthoff, I.M., Meehan, E.J., and Carr, E.M., Mechanism of initiation of emulsion polymerization by per sulfate, J. Am. Chem. Soc., 1953, vol. 75, pp. 1439–1441.

    Article  CAS  Google Scholar 

  32. Brown, E.R. and Large, R.F., Physical Methods of Chemistry, Weissberger, A. and Rossiter, B.W., Eds., NewYork: Wiley, 1964.

    Google Scholar 

  33. Shetti, N.P., Katrahalli, U., and Nayak, D.S., Electrochemical behavior of xanthene food dye erythrosine at glassy carbon electrode and its analytical applications, Asian J. Pharm. Clin. Res., 2015, vol. 8, no. 4, p. 125.

    Google Scholar 

  34. Bockris, J.O’M., Reddy, A.K.N., and Gamboa-Aldeco, M., Modern Electochemistry, Vol. 2A: Fundamentals of Electrodes, 2nd ed., New York: Academic/Plenum, 2000.

    Google Scholar 

  35. Moore, W.J., Physical Chemistry, 5 ed., New Delhi: Orient Longman Pvt Ltd., 2004, p. 502.

    Google Scholar 

  36. Potnuru, V.G., Reddy, K.Y., Arjun, C.H., Prasanthi, P., Ramya, K.M., and Sekhar, C.E., Formulation and evaluation of valacyclovir hydrochloride microcapsules, J. Pharm. Anal., 2012, vol. 1, p. 13.

    Google Scholar 

  37. Rao, K.S. and Sunil, M., Stability-indicating liquid chromatographic method for valacyclovir, Int. J. Chem. Technol. Res., 2009, vol. 1, p. 702.

    Google Scholar 

  38. Sugumaran, M., Bharathi, V., Hemachander, R., and Lakshmi, M., RP-HPLC method for the determination of valacyclovir in bulk and pharmaceutical formulation, Pharma Chemica, 2001, vol. 3, p. 190.

    Google Scholar 

  39. Bengi, U., Ozkan, S.A., and Senturk, Z., Electrooxidation of the antiviral drug valacyclovir and its squarewave and differential pulse voltammetric determination in pharmaceuticals and human biological fluids, Anal. Chim. Acta, 2006, vol. 555, p. 341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh M. Tuwar.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 10, pp. 869–878.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devarushi, U.S., Shetti, N.P., Bukkitgar, S.D. et al. Electrochemical Behavior of an Anti-Viral Drug Valacyclovir at Carbon Paste Electrode and Its Analytical Application. Russ J Electrochem 54, 760–768 (2018). https://doi.org/10.1134/S1023193518100026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518100026

Keywords

Navigation