Skip to main content
Log in

Studies of Cobalt(III) and Chromium(III) Complexes as Mediators in the Silver Nanoparticle Electrosynthesis in Aqueous Media

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Metal complexes [Cr(bipy)3]3+, [Co(bipy)3]3+, and [Co(sep)]3+ in aqueous media at the potentials of M(III)/M(II) redox couple are shown playing a role of mediators in the electrosynthesis of silver nanoparticles, stabilized in a polyvinylpyrrolidone shell, by means of Ag(I) reduction. [Cr(bipy)3]3+ is consumed under the conditions of long-term preparative electrolysis, the reduction process is accompanied by cathode passivation, therefore, the Ag+ ions complete conversion to the Ag-nanoparticles is unattainable. The two other metal complexes are fully remained unimpaired; the mediated electrosynthesis of the Ag-nanoparticles is carried out well effectively: the Ag-nanoparticles are produced in the solution bulk with a nearly quantitative yield, a theoretical charge being consumed. the [Co(bipy)3]3+-mediated reduction of the Ag+ ions, generated by a silver anode in situ dissolution in the course of single compartment cell electrolysis, is accompanied by the anode metal dispersion and results in the formation of polydisperse Ag-nanoparticles. The summary Ag-nanoparticle current efficiency in the solution bulk comes to 128%. Thus formed Ag-nanoparticles are characterized by using dynamic light scattering, scanning and transmission electron microscopy, and X-ray powder diffraction. The Ag-nanoparticles are spherical, with a mean size of 83 ± 53 nm, or have a form of nanowires, with a length of l = 1216 ± 664 nm and diameter of d = 94 ± 17 nm. The [Co(sep)]3+-mediated AgCl reduction gives ellipsoidal Ag-nanoparticles sized l = 46 ± 19 nm, d = 27 ± 7 nm; the silver crystallite mean size is 20(1)–34.4(9) nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pomogaylo, A.D., Rosenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  2. Roldughin, V.I., Quantum-Size colloid metal systems, Russ. Chem. Rev., 2000, vol. 69, p.821.

    Article  CAS  Google Scholar 

  3. Daniel, M.C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, vol. 104, p.293.

    Article  CAS  Google Scholar 

  4. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostructury i nanomaterialy (Nanotechnology, Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  5. Volkov, V.V., Kravchenko, T.A., and Roldughin, V.I., Metal Nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev, 2013, vol. 82, p.465.

    Article  CAS  Google Scholar 

  6. Dykman, L.A., Bogatyrev, V.A., Shchyogolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy. Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles, Synthesis, Properties, and Biomedical Applications), Moscow: Nauka, 2008.

    Google Scholar 

  7. Kharisov, B.I., Kharissova, O.V., and Ortiz-Mendez, U., Handbook of Less-common Nanostructures, CRC Press, Taylor Francis Group, 2012.

    Google Scholar 

  8. Yanilkin, V.V., Nasybullina, G.R., Ziganshina, A.Yu., Nizamiev, I.R., Kadirov, M.K., Korshin, D.E., and Konovalov, A.I. Tetraviologen calix[4]resorcine as a mediator of the electrochemical reduction of [PdCl4]2–for the production of Pd0 nanoparticles, Mendeleev Commun., 2014, vol. 24, p.108.

    Article  CAS  Google Scholar 

  9. Yanilkin, V.V., Nasybullina, G.R., Sultanova, E.D., Ziganshina, A.Yu., and Konovalov, A.I., Methyl viologen and tetraviologen calix[4]resorcinol as mediators of the electrochemical reduction of [PdCl4] 2-with formation of finely dispersed Pd0, Russ. Chem. Bull. Int. Ed., 2014, vol. 63, no. 6, p. 1409.

    Article  CAS  Google Scholar 

  10. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p.951.

    Article  CAS  Google Scholar 

  11. Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd deposition for catalytic application in aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, vol. 486, p.185.

    Article  CAS  Google Scholar 

  12. Yanilkin, V.V., Nastapova, N.V., Sultanova, E.D., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Electrochemical synthesis of nanocomposite of palladium nanoparticles with polymer viologen-containing nanocapsule, Russ. Chem. Bull. Int. Ed., 2016, vol. 65, no. 1, p.125.

    Article  CAS  Google Scholar 

  13. Nasretdinova, G.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC, J. Electrochem. Soc., 2016, vol. 163, p. G99.

    Article  CAS  Google Scholar 

  14. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 2015, vol. 50, p.69.

    Article  CAS  Google Scholar 

  15. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical mediated synthesis of silver nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 1029.

    Article  CAS  Google Scholar 

  16. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Y.N., Methylviologen mediated electrochemical reduction of AgCl—a new route to produce a silica core/Ag shell nanocomposite material in solution, Electrochem. Commun., 2015, vol. 59, p.60.

    Article  CAS  Google Scholar 

  17. Nasretdinova, G.R., Fazleeva, R.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrochemical synthesis of silver nanoparticles by reduction of AgCl nanospheres stabilized with cetyltrimethylammonium chloride, Russ. J. Electrochem., 2017, vol. 53, p.31.

    Article  CAS  Google Scholar 

  18. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V., and Osin, Yu.N., The role of solvent in methylviologen mediated electrosynthesis of silver nanoparticles stabilized with polyvinylpyrrolidone, Butlerov Commun., 2016, vol. 46, p.128.

    Google Scholar 

  19. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fedorenko, S.V., Jilkin, M., Mustafina, A.R., Gubaidullin, A.T., and Osin, Y.N., Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk, RSC Advances, 2016, vol. 6, p. 1851.

    Article  CAS  Google Scholar 

  20. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Fedorenko, S.V., Mustafina, A.R., and Osin, Y.N., Methylviologen-Mediated Electrochemical Synthesis of Platinum Nanoparticles in Solution Bulk, Russ. J. Electrochem., 2017, vol. 53, p.509.

    Article  CAS  Google Scholar 

  21. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Y.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p.36.

    Article  CAS  Google Scholar 

  22. Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtyugin, V.G., Vorobiev, V.V., and Osin, Y.N., Molucular oxygen as a mediator in electrosynthesis of metals nanoparticles in DMFA, Russ. J. Electrochem., 2018, vol. 54 (in press).

  23. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Osin, Y.N., Fullerene mediated electrosynthesis of Au/C60 nanocomposite, ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 4, p. M19.

    Article  CAS  Google Scholar 

  24. Yanilkin, V.V., Nasretdinova, G.R., and Salnikov, V.V., Anthracene-mediated electrochemical synthesis of metallic cobalt nanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p.82.

    Article  CAS  Google Scholar 

  25. Organic Electrochemistry, 2nd Ed., Eds. Baizer, M. and Lund, H., New York, Basel: Marcel Dekker, 1983.

  26. Mann, Ch. and Barnes, K., Electrochemical Reactions in Nonaqueous Systems, New York: Marcel Dekker, 1970.

    Google Scholar 

  27. Tomilov, A.P., Fioshin, M.Ya., and Smirnov, V.A., Elektrokhimicheskii sintez organicheskikh veshchestv (Electrochemical Synthesis of Organic Compounds), Leningrad: Khimiya, 1976.

    Google Scholar 

  28. Stepanov, A.S., Yanilkin, V.V., Nastapova, N.V., Mustafina, A.R., Burilov, V.A., Solov’eva, S.E., Antipin, I.S., and Konovalov, A.I. Thermodynamics of electrode reactions of nanoscale supramolecular systems based on calix[4]arenes and metal complexes, Vestn. Kaz. tech. univ., 2010, no. 2, p.122.

    Google Scholar 

  29. DIFFRAC Plus Evaluation package EVA, Version 11, User’s Manual, Karlsruhe: Bruker AXS, 2005.

  30. TOPAS V3: General profile and structure analysis software for powder diffraction data. Technical Reference, Karlsruhe: Bruker AXS, 2005.

  31. Burstall, F.H. and Nyholm, R.S., Magnetic Moments and Bond Types of Transition-metal Complexes, Studies in Coordination Chemistry, 1952, p. 3570.

    Google Scholar 

  32. Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellins Horwood, 1976.

    Google Scholar 

  33. Tan, H., Santbergen, R., Smets, A.H.M., and Zeman, M., Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles, Nano Lett., 2012, vol. 12, p. 4070.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yanilkin.

Additional information

Original Russian Text © V.V. Yanilkin, R.R. Fazleeva, N.V. Nastapova, G.R. Nasretdinova, A.T. Gubaidullin, N.B. Berezin, Yu.N. Osin, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 8, pp. 747–762.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilkin, V.V., Fazleeva, R.R., Nastapova, N.V. et al. Studies of Cobalt(III) and Chromium(III) Complexes as Mediators in the Silver Nanoparticle Electrosynthesis in Aqueous Media. Russ J Electrochem 54, 650–664 (2018). https://doi.org/10.1134/S1023193518080062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518080062

Keywords

Navigation