Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 265–282 | Cite as

Molecular Oxygen as Mediator in the Metal Nanoparticles’ Electrosynthesis in N,N-Dimethylformamide

  • V. V. Yanilkin
  • N. V. Nastapova
  • R. R. Fazleeva
  • G. R. Nasretdinova
  • E. D. Sultanova
  • A. Yu. Ziganshina
  • A. T. Gubaidullin
  • A. I. Samigullina
  • V. G. Evtyugin
  • V. V. Vorob’ev
  • Yu. N. Osin


Ultra-fine gold (<2 nm), silver (5 ± 2 nm), and palladium (<1–2 nm) nanoparticles stabilized in polyvinylpyrrolidone shell were synthesized in N,N-dimethylformamide, using molecular oxygen dissolved in the electrolyte as mediator, by the reduction of the metals’ ions and complexes at the controlled potential of the oxygen reduction to its radical-anion. Pd-nanoparticles showed high catalytic activity in the reactions of p-nitrophenol reduction and Suzuki cross-coupling. Long-term ageing of spherical Ag-nanoparticles for 60 days in the post- electrolysis solution resulted in their consolidation (up to 17 ± 5 nm; the average size of crystallites 7.5 (3) nm). Upon similar exposure of Au-nanoparticles for 15 days, V-shaped nanoparticles were formed (length 112 ± 53 nm, width 58 ± 22 nm, crystallites 20(2)–31(1) nm); upon the isolation, dispersing into ethanol, and exposure for 48 h, hexagonal nanoparticles (105 ± 29 nm) and polygons (56 ± 25 nm, crystallites 24(2)–51(1) nm; upon dispersing into water and exposure for 8 h, spherical nanoparticles (13 ± 8 nm, crystallites 7(1)–13.4(5) nm). Thus obtained nanoparticles are characterized by methods of cyclic voltammetry, dynamic light scattering, scanning and high resolution transmission electron microscopy, and X-ray powder diffraction.


electrosynthesis nanoparticles gold silver palladium mediator oxygen polyvinylpyrrolidone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Solutions), Moscow: himiya, 2000.Google Scholar
  2. 2.
    Roldughin, V.I., Quantum-size colloid metal systems, Russ. Chem. Rev., 2000, vol. 69, p. 821.CrossRefGoogle Scholar
  3. 3.
    Daniel, M.C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, vol. 104, p. 293.CrossRefGoogle Scholar
  4. 4.
    Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), 2nd ed., Librokom, 2009.Google Scholar
  5. 5.
    Volkov, V.V., Kravchenko, T.A., and Roldughin, V.I., Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev., 2013, vol. 82, p. 465.CrossRefGoogle Scholar
  6. 6.
    Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy. Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles. Synthesis, Properties, Biomedical Applications), Moscow: Nauka, 2008.Google Scholar
  7. 7.
    Kharisov, B.I., Kharissova, O.V., and Ortiz-Méndez, U., Handbook of Less-common Nanostructures. CRC Press, Taylor and Francis Group, 2012.Google Scholar
  8. 8.
    Spravochnik po elektrokhimii (A Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.Google Scholar
  9. 9.
    Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, Russ. Chem. Rev., 2015, vol. 84, p. 159.CrossRefGoogle Scholar
  10. 10.
    Saez, V. and Mason, T.J., Sonoelectrochemical synthesis of nanoparticles, Molecules, 2009, vol. 14, p. 4284.CrossRefGoogle Scholar
  11. 11.
    Zhu, J., Liu, S., Palchik, O., Koltypin, Y., and Gedanken, A., Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods, Langmuir, 2000, vol. 16, p. 6396.CrossRefGoogle Scholar
  12. 12.
    Reisse, J., Caulier, T., Deckerkheer, C., Fabre, O., Vandercammen, J., Delplancke, J.L., and Winand, R., Quantitative sonochemistry, Ultrasonics Sonochemistry, 1996, vol. 3, p. 147.CrossRefGoogle Scholar
  13. 13.
    Reetz, M.T. and Helbig, W., Size-selective synthesis of nanostructured transition metal clusters, J. Amer. Chem. Soc., 1994, vol. 116, p. 7401.CrossRefGoogle Scholar
  14. 14.
    Becker, J.A., Schäfer, R., Festag, R., Ruland, W., Wendorff, J.H., Pebler, J., Quaiser, S.A., Helbig, W., and Reetz, M.T., Electrochemical growth of superparamagnetic cobalt clusters, J. Chem. Phys., 1995, vol. 103, p. 2520.CrossRefGoogle Scholar
  15. 15.
    Reetz, M.T., Quaiser, S.A., and Merk, C., Electrochemical preparation of nanostructured titanium clusters: characterization and use in McMurry-type coupling reactions, Chem. Ber., 1996, vol. 129, p. 741.CrossRefGoogle Scholar
  16. 16.
    Reetz, M T., Helbig, W., Quaiser, S.A., Stimming, U., Breuer, N., and Vogel, R., Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM, Science, 1995, vol. 267, p. 367.CrossRefGoogle Scholar
  17. 17.
    Reetz, M.T., Winter, M., Breinbauer, R., Thurn-Albrecht, T., and Vogel, W., Size-selective electrochemical preparation of surfactant-stabilized Pd-, Niand Pt/Pd colloids, Chem. Eur. J., 2001, vol. 7, p. 1084.CrossRefGoogle Scholar
  18. 18.
    Yanilkin, V.V., Nasybullina, G.R., Ziganshina, A.Yu., Nizamiev, I.R., Kadirov, M.K., Korshin, D.E., and Konovalov, A.I., Tetraviologen calix[4]resorcine as a mediator of the electrochemical reduction of [PdCl4]2− for the production of Pd0 nanoparticles, Mendeleev Commun., 2014, vol. 24, p. 108.CrossRefGoogle Scholar
  19. 19.
    Yanilkin, V.V., Nasybullina, G.R., Sultanova, E.D., Ziganshina, A.Yu., and Konovalov, A.I., Methyl viologen and tetraviologen calix[4]resorcinol as mediators of the electrochemical reduction of [PdCl4]2− with formation of finely dispersed Pd0, Russ. Chem. Bull., Int. Ed., 2014, vol. 63, p. 1409.CrossRefGoogle Scholar
  20. 20.
    Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 951.CrossRefGoogle Scholar
  21. 21.
    Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions, Colloids and Surfaces A: Physicochem. Eng. Aspects., 2015, vol. 486, p. 185.CrossRefGoogle Scholar
  22. 22.
    Yanilkin, V.V., Nastapova, N.V., Sultanova, E.D., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Electrochemical synthesis of nanocomposite of palladium nanoparticles with polymer viologen-containing nanocapsule, Russ. Chem. Bull., Int. Ed., 2016, vol. 65, p. 125.CrossRefGoogle Scholar
  23. 23.
    Nasretdinova, G.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC, J. Electrochem. Soc., 2016, vol. 163, p. G99.CrossRefGoogle Scholar
  24. 24.
    Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 2015, vol. 50, p. 69.CrossRefGoogle Scholar
  25. 25.
    Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical mediated synthesis of silver nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 1029.CrossRefGoogle Scholar
  26. 26.
    Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Toropchina, A.V., and Osin, Y.N., Methylviologen mediated electrochemical reduction of AgCl—a new route to produce a silica core/Ag shell nanocomposite material in solution, Electrochem. Commun., 2015, vol. 59, p. 60.CrossRefGoogle Scholar
  27. 27.
    Nasretdinova, G.R., Fazleeva, R.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrochemical synthesis of silver nanoparticles by reduction of AgCl nanospheres stabilized with cetyltrimethylammonium chloride, Russ. J. Electrochem., 2017, vol. 53, p. 31.CrossRefGoogle Scholar
  28. 28.
    Yanilkin, V.V., Nasretdinova, G.R., Osin, Y.N., and Salnikov, V.V., Anthracene-mediated electrochemical synthesis of metallic cobalt nanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p. 82.CrossRefGoogle Scholar
  29. 29.
    Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fedorenko, S.V., Jilkin, M.E., Mustafina, A.R., Gubaidullin, A.T., and Osin, Y.N., Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk, RSC Advances, 2016, vol. 6, p. 1851.CrossRefGoogle Scholar
  30. 30.
    Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Yu.N., and Gubaidullin, A.T., Fullerene mediated electrosynthesis of Au/C60 nanocomposite, ECS J. Solid State Sci. Technol., 2017, vol. 6, p. M19.CrossRefGoogle Scholar
  31. 31.
    Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Fedorenko, S.V., Mustafina, A.R., and Osin, Y.N., Methylviologen-mediated electrochemical synthesis of platinum nanoparticles in solution bulk, Russ. J. Electrochem., 2017, vol. 53, p. 509.CrossRefGoogle Scholar
  32. 32.
    Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Y.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p. 36.CrossRefGoogle Scholar
  33. 33.
    Solubility Data Series. Oxygen and Ozone. Battino, R., Ed., Oxford: Pergamon, 1981, vol. 7.Google Scholar
  34. 34.
    DIFFRAC Plus Evaluation package EVA, Version 11, User’s Manual, Bruker AXS, Karlsruhe, Germany, 2005.Google Scholar
  35. 35.
    TOPAS V3: General profile and structure analysis software for powder diffraction data. (2005). Technical Reference. Bruker AXS. Karlsruhe, Germany.Google Scholar
  36. 36.
    Tan, H., Santbergen, R., Smets, A.H.M., and Zeman, M., Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles, Nano Lett., 2012, vol. 12, p. 4070.CrossRefGoogle Scholar
  37. 37.
    Yakhvarov, D.G., Kagirov, R.M., Rizvanov, I.Kh., Morozov, V.I., and Sinyashin, O.G., New aspects of the electroreduction of palladium dichloride complex with 1,2-bis(diphenylphosphino)ethane, Mendeleev Commun., 2009, vol. 19, p. 190.CrossRefGoogle Scholar
  38. 38.
    Plieth, W.J., Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering, J. Phys. Chem., 1982, vol. 86, p. 3166.CrossRefGoogle Scholar
  39. 39.
    Sultanova, E.D., Salnikov, V.V., Mukhitova, R.K., Zuev, Yu.F., Osin, Yu.N., Zakharova, L.Ya., Ziganshina, A.Y., and Konovalov, A.I., High catalytic activity of palladium nanoparticle clusters supported on a spherical polymer network, Chem. Commun., 2015, vol. 51, p. 13317.CrossRefGoogle Scholar
  40. 40.
    Hervés, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., Dzubiella, J., Lu, Y., and Ballauff, M., Catalysis by metallic nanoparticles in aqueous solution: model reactions, Chem. Soc. Rev., 2012, vol. 41, p. 5577.CrossRefGoogle Scholar
  41. 41.
    Zhou, X., Xu, W., Liu, G., Panda, D., and Chen, P., Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level, J. Amer. Chem. Soc., 2010, vol. 132, p. 138.CrossRefGoogle Scholar
  42. 42.
    Gu, S., Wunder, S., Lu, Y., Ballauff, M., Rademann, K., Fenger, R., Jaquet, B., and Zaccone, A., Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles, J. Phys. Chem. C, 2014, vol. 118, p. 18618.CrossRefGoogle Scholar
  43. 43.
    He, R., Wang, Y-Ch., Wang, X., Wang, Zh., Liu, G., Zhou, W., Wen, L., Li, Q., Wang, X., Chen, X., Zeng, J., and Hou, J.G., Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties, Nature Commun., 2014, vol. 5, p. 4327.Google Scholar
  44. 44.
    Zeng, J., Zhang, Q., Chen, J., and Xia, Y., A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles, Nano Lett., 2010, vol. 10, p. 30.CrossRefGoogle Scholar
  45. 45.
    Ma, T., Yang, W., Liu, S., Zhang, H., and Liang, F., A Comparison Reduction of 4-Nitrophenol by Gold Nanospheres and Gold Nanostars, Catalysts, 2017, vol. 7, p. 38.CrossRefGoogle Scholar
  46. 46.
    Seo, Y.S., Ahn, E-Y., Park, J., Kim, T.Y., Hong, J.E., Kim, K., and Park, Y., Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid, Nanoscale Res. Lett., 2017, vol. 12, p. 7.CrossRefGoogle Scholar
  47. 47.
    Nanotechnology for Water and Wastewater Treatment, Lens, P., Virkutyte, J., Jegatheesan, V., and Al-Abed, S., Eds., London, New York: IWA Publishing, 2013.Google Scholar
  48. 48.
    Mejías, N., Pleixats, R., Shafir, A., Medio-Simón, M., and Asensio, G., Water-soluble palladium nanoparticles: click synthesis and applications as a recyclable catalyst in suzuki cross-couplings in aqueous media, Eur. J. Org. Chem., 2010, vol. 26, p. 5090.CrossRefGoogle Scholar
  49. 49.
    Nanoparticles and Catalysis, Astruc, D., Ed., Weinheim: Wiley-VCH, 2008.Google Scholar
  50. 50.
    Magdesieva, T.V., Nikitin, O.M., Levitsky, O.A., Zinovyeva, V.A., Bezverkhyy, I., Zolotukhina, E.V., and Vorotyntsev, M.A., Polypyrrole–palladium nanoparticles composite as efficient catalyst for Suzuki–Miyaura coupling, J. Mol. Catal. A: Chem., 2012, vol. 353–354, p. 50.CrossRefGoogle Scholar
  51. 51.
    Chatterjee, A. and Ward, T.R., Recent Advances in the Palladium Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in Water, Catal. Lett., 2016, vol. 146, p. 820.CrossRefGoogle Scholar
  52. 52.
    Han, F.-Sh., Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts, Chem. Soc. Rev., 2013, vol. 42, p. 5270.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Yanilkin
    • 1
  • N. V. Nastapova
    • 1
  • R. R. Fazleeva
    • 1
  • G. R. Nasretdinova
    • 1
  • E. D. Sultanova
    • 1
  • A. Yu. Ziganshina
    • 1
  • A. T. Gubaidullin
    • 1
  • A. I. Samigullina
    • 1
  • V. G. Evtyugin
    • 2
  • V. V. Vorob’ev
    • 2
  • Yu. N. Osin
    • 2
  1. 1.Arbuzov Institute of Organic and Physical ChemistryKazanRussia
  2. 2.Interdisciplinary Center “Analytical Microscopy,”Kazan (Privolzhskii) Federal UniversityKazanRussia

Personalised recommendations