Skip to main content
Log in

Molecular Oxygen as Mediator in the Metal Nanoparticles’ Electrosynthesis in N,N-Dimethylformamide

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Ultra-fine gold (<2 nm), silver (5 ± 2 nm), and palladium (<1–2 nm) nanoparticles stabilized in polyvinylpyrrolidone shell were synthesized in N,N-dimethylformamide, using molecular oxygen dissolved in the electrolyte as mediator, by the reduction of the metals’ ions and complexes at the controlled potential of the oxygen reduction to its radical-anion. Pd-nanoparticles showed high catalytic activity in the reactions of p-nitrophenol reduction and Suzuki cross-coupling. Long-term ageing of spherical Ag-nanoparticles for 60 days in the post- electrolysis solution resulted in their consolidation (up to 17 ± 5 nm; the average size of crystallites 7.5 (3) nm). Upon similar exposure of Au-nanoparticles for 15 days, V-shaped nanoparticles were formed (length 112 ± 53 nm, width 58 ± 22 nm, crystallites 20(2)–31(1) nm); upon the isolation, dispersing into ethanol, and exposure for 48 h, hexagonal nanoparticles (105 ± 29 nm) and polygons (56 ± 25 nm, crystallites 24(2)–51(1) nm; upon dispersing into water and exposure for 8 h, spherical nanoparticles (13 ± 8 nm, crystallites 7(1)–13.4(5) nm). Thus obtained nanoparticles are characterized by methods of cyclic voltammetry, dynamic light scattering, scanning and high resolution transmission electron microscopy, and X-ray powder diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Solutions), Moscow: himiya, 2000.

    Google Scholar 

  2. Roldughin, V.I., Quantum-size colloid metal systems, Russ. Chem. Rev., 2000, vol. 69, p. 821.

    Article  CAS  Google Scholar 

  3. Daniel, M.C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, vol. 104, p. 293.

    Article  CAS  Google Scholar 

  4. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), 2nd ed., Librokom, 2009.

    Google Scholar 

  5. Volkov, V.V., Kravchenko, T.A., and Roldughin, V.I., Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev., 2013, vol. 82, p. 465.

    Article  Google Scholar 

  6. Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy. Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles. Synthesis, Properties, Biomedical Applications), Moscow: Nauka, 2008.

    Google Scholar 

  7. Kharisov, B.I., Kharissova, O.V., and Ortiz-Méndez, U., Handbook of Less-common Nanostructures. CRC Press, Taylor and Francis Group, 2012.

    Google Scholar 

  8. Spravochnik po elektrokhimii (A Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

  9. Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, Russ. Chem. Rev., 2015, vol. 84, p. 159.

    Article  CAS  Google Scholar 

  10. Saez, V. and Mason, T.J., Sonoelectrochemical synthesis of nanoparticles, Molecules, 2009, vol. 14, p. 4284.

    Article  CAS  Google Scholar 

  11. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., and Gedanken, A., Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods, Langmuir, 2000, vol. 16, p. 6396.

    Article  CAS  Google Scholar 

  12. Reisse, J., Caulier, T., Deckerkheer, C., Fabre, O., Vandercammen, J., Delplancke, J.L., and Winand, R., Quantitative sonochemistry, Ultrasonics Sonochemistry, 1996, vol. 3, p. 147.

    Article  Google Scholar 

  13. Reetz, M.T. and Helbig, W., Size-selective synthesis of nanostructured transition metal clusters, J. Amer. Chem. Soc., 1994, vol. 116, p. 7401.

    Article  CAS  Google Scholar 

  14. Becker, J.A., Schäfer, R., Festag, R., Ruland, W., Wendorff, J.H., Pebler, J., Quaiser, S.A., Helbig, W., and Reetz, M.T., Electrochemical growth of superparamagnetic cobalt clusters, J. Chem. Phys., 1995, vol. 103, p. 2520.

    Article  CAS  Google Scholar 

  15. Reetz, M.T., Quaiser, S.A., and Merk, C., Electrochemical preparation of nanostructured titanium clusters: characterization and use in McMurry-type coupling reactions, Chem. Ber., 1996, vol. 129, p. 741.

    Article  CAS  Google Scholar 

  16. Reetz, M T., Helbig, W., Quaiser, S.A., Stimming, U., Breuer, N., and Vogel, R., Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM, Science, 1995, vol. 267, p. 367.

    Article  CAS  Google Scholar 

  17. Reetz, M.T., Winter, M., Breinbauer, R., Thurn-Albrecht, T., and Vogel, W., Size-selective electrochemical preparation of surfactant-stabilized Pd-, Niand Pt/Pd colloids, Chem. Eur. J., 2001, vol. 7, p. 1084.

    Article  CAS  Google Scholar 

  18. Yanilkin, V.V., Nasybullina, G.R., Ziganshina, A.Yu., Nizamiev, I.R., Kadirov, M.K., Korshin, D.E., and Konovalov, A.I., Tetraviologen calix[4]resorcine as a mediator of the electrochemical reduction of [PdCl4]2− for the production of Pd0 nanoparticles, Mendeleev Commun., 2014, vol. 24, p. 108.

    Article  CAS  Google Scholar 

  19. Yanilkin, V.V., Nasybullina, G.R., Sultanova, E.D., Ziganshina, A.Yu., and Konovalov, A.I., Methyl viologen and tetraviologen calix[4]resorcinol as mediators of the electrochemical reduction of [PdCl4]2− with formation of finely dispersed Pd0, Russ. Chem. Bull., Int. Ed., 2014, vol. 63, p. 1409.

    Article  CAS  Google Scholar 

  20. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 951.

    Article  CAS  Google Scholar 

  21. Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions, Colloids and Surfaces A: Physicochem. Eng. Aspects., 2015, vol. 486, p. 185.

    Article  CAS  Google Scholar 

  22. Yanilkin, V.V., Nastapova, N.V., Sultanova, E.D., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Electrochemical synthesis of nanocomposite of palladium nanoparticles with polymer viologen-containing nanocapsule, Russ. Chem. Bull., Int. Ed., 2016, vol. 65, p. 125.

    Article  CAS  Google Scholar 

  23. Nasretdinova, G.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC, J. Electrochem. Soc., 2016, vol. 163, p. G99.

    Article  CAS  Google Scholar 

  24. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 2015, vol. 50, p. 69.

    Article  CAS  Google Scholar 

  25. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical mediated synthesis of silver nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 1029.

    Article  CAS  Google Scholar 

  26. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Toropchina, A.V., and Osin, Y.N., Methylviologen mediated electrochemical reduction of AgCl—a new route to produce a silica core/Ag shell nanocomposite material in solution, Electrochem. Commun., 2015, vol. 59, p. 60.

    Article  CAS  Google Scholar 

  27. Nasretdinova, G.R., Fazleeva, R.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrochemical synthesis of silver nanoparticles by reduction of AgCl nanospheres stabilized with cetyltrimethylammonium chloride, Russ. J. Electrochem., 2017, vol. 53, p. 31.

    Article  Google Scholar 

  28. Yanilkin, V.V., Nasretdinova, G.R., Osin, Y.N., and Salnikov, V.V., Anthracene-mediated electrochemical synthesis of metallic cobalt nanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p. 82.

    Article  CAS  Google Scholar 

  29. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fedorenko, S.V., Jilkin, M.E., Mustafina, A.R., Gubaidullin, A.T., and Osin, Y.N., Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk, RSC Advances, 2016, vol. 6, p. 1851.

    Article  CAS  Google Scholar 

  30. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Yu.N., and Gubaidullin, A.T., Fullerene mediated electrosynthesis of Au/C60 nanocomposite, ECS J. Solid State Sci. Technol., 2017, vol. 6, p. M19.

    Article  CAS  Google Scholar 

  31. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Fedorenko, S.V., Mustafina, A.R., and Osin, Y.N., Methylviologen-mediated electrochemical synthesis of platinum nanoparticles in solution bulk, Russ. J. Electrochem., 2017, vol. 53, p. 509.

    Article  CAS  Google Scholar 

  32. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Y.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p. 36.

    Article  CAS  Google Scholar 

  33. Solubility Data Series. Oxygen and Ozone. Battino, R., Ed., Oxford: Pergamon, 1981, vol. 7.

  34. DIFFRAC Plus Evaluation package EVA, Version 11, User’s Manual, Bruker AXS, Karlsruhe, Germany, 2005.

  35. TOPAS V3: General profile and structure analysis software for powder diffraction data. (2005). Technical Reference. Bruker AXS. Karlsruhe, Germany.

  36. Tan, H., Santbergen, R., Smets, A.H.M., and Zeman, M., Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles, Nano Lett., 2012, vol. 12, p. 4070.

    Article  CAS  Google Scholar 

  37. Yakhvarov, D.G., Kagirov, R.M., Rizvanov, I.Kh., Morozov, V.I., and Sinyashin, O.G., New aspects of the electroreduction of palladium dichloride complex with 1,2-bis(diphenylphosphino)ethane, Mendeleev Commun., 2009, vol. 19, p. 190.

    Article  CAS  Google Scholar 

  38. Plieth, W.J., Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering, J. Phys. Chem., 1982, vol. 86, p. 3166.

    Article  CAS  Google Scholar 

  39. Sultanova, E.D., Salnikov, V.V., Mukhitova, R.K., Zuev, Yu.F., Osin, Yu.N., Zakharova, L.Ya., Ziganshina, A.Y., and Konovalov, A.I., High catalytic activity of palladium nanoparticle clusters supported on a spherical polymer network, Chem. Commun., 2015, vol. 51, p. 13317.

    Article  CAS  Google Scholar 

  40. Hervés, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., Dzubiella, J., Lu, Y., and Ballauff, M., Catalysis by metallic nanoparticles in aqueous solution: model reactions, Chem. Soc. Rev., 2012, vol. 41, p. 5577.

    Article  Google Scholar 

  41. Zhou, X., Xu, W., Liu, G., Panda, D., and Chen, P., Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level, J. Amer. Chem. Soc., 2010, vol. 132, p. 138.

    Article  CAS  Google Scholar 

  42. Gu, S., Wunder, S., Lu, Y., Ballauff, M., Rademann, K., Fenger, R., Jaquet, B., and Zaccone, A., Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles, J. Phys. Chem. C, 2014, vol. 118, p. 18618.

    Article  CAS  Google Scholar 

  43. He, R., Wang, Y-Ch., Wang, X., Wang, Zh., Liu, G., Zhou, W., Wen, L., Li, Q., Wang, X., Chen, X., Zeng, J., and Hou, J.G., Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties, Nature Commun., 2014, vol. 5, p. 4327.

    CAS  Google Scholar 

  44. Zeng, J., Zhang, Q., Chen, J., and Xia, Y., A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles, Nano Lett., 2010, vol. 10, p. 30.

    Article  CAS  Google Scholar 

  45. Ma, T., Yang, W., Liu, S., Zhang, H., and Liang, F., A Comparison Reduction of 4-Nitrophenol by Gold Nanospheres and Gold Nanostars, Catalysts, 2017, vol. 7, p. 38.

    Article  Google Scholar 

  46. Seo, Y.S., Ahn, E-Y., Park, J., Kim, T.Y., Hong, J.E., Kim, K., and Park, Y., Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid, Nanoscale Res. Lett., 2017, vol. 12, p. 7.

    Article  Google Scholar 

  47. Nanotechnology for Water and Wastewater Treatment, Lens, P., Virkutyte, J., Jegatheesan, V., and Al-Abed, S., Eds., London, New York: IWA Publishing, 2013.

  48. Mejías, N., Pleixats, R., Shafir, A., Medio-Simón, M., and Asensio, G., Water-soluble palladium nanoparticles: click synthesis and applications as a recyclable catalyst in suzuki cross-couplings in aqueous media, Eur. J. Org. Chem., 2010, vol. 26, p. 5090.

    Article  Google Scholar 

  49. Nanoparticles and Catalysis, Astruc, D., Ed., Weinheim: Wiley-VCH, 2008.

  50. Magdesieva, T.V., Nikitin, O.M., Levitsky, O.A., Zinovyeva, V.A., Bezverkhyy, I., Zolotukhina, E.V., and Vorotyntsev, M.A., Polypyrrole–palladium nanoparticles composite as efficient catalyst for Suzuki–Miyaura coupling, J. Mol. Catal. A: Chem., 2012, vol. 353–354, p. 50.

    Article  Google Scholar 

  51. Chatterjee, A. and Ward, T.R., Recent Advances in the Palladium Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in Water, Catal. Lett., 2016, vol. 146, p. 820.

    Article  CAS  Google Scholar 

  52. Han, F.-Sh., Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts, Chem. Soc. Rev., 2013, vol. 42, p. 5270.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yanilkin.

Additional information

Original Russian Text © V.V. Yanilkin, N.V. Nastapova, R.R. Fazleeva, G.R. Nasretdinova, E.D. Sultanova, A.Yu. Ziganshina, A.T. Gubaidullin, A.I. Samigullina, V.G. Evtyugin, V.V. Vorob’ev, Yu.N. Osin, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 307–326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R. et al. Molecular Oxygen as Mediator in the Metal Nanoparticles’ Electrosynthesis in N,N-Dimethylformamide. Russ J Electrochem 54, 265–282 (2018). https://doi.org/10.1134/S1023193518030102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030102

Keywords

Navigation