Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 311–317 | Cite as

Anodic Synthesis of New Benzofuran Derivatives Using Active Methylene Group at Platinum Electrode

  • Jyoti Malviya
  • R. K. P. Singh
  • Shashi Kala
  • L. K. Sharma
Short Communications
  • 24 Downloads

Abstract

A facile and Eco-compatible synthesis of benzofuran derivatives (4a–4h) has been carried out at platinum electrode by electrochemical oxidation of catechol in the presence of active methylene groups. Electro- organic synthesis has been performed in an undivided cell at ambient conditions. The products of electrolysis have been purified and characterized by FTIR, 1H NMR and 13C NMR and mechanism was deduced by voltammetric studies.

Keywords

anodic oxidation catechol Michael addition controlled potential electrolysis (CPE) cyclic voltammetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lo, Y.C., Liu, Y., and Burka, L.T., A model for catecholcontaining antioxidants neuronal effects of 4-t-butylcatechol, Toxicol. Appl. Pharmacol., 2008, vol. 228, p. 247.CrossRefGoogle Scholar
  2. 2.
    Rao, C.V., Desai, D., and Reddy, B.S., Chemoprevention of colon carcinogenesis by phenylethyl-3-methylcaffeate, Cancer Res., 1995, vol. 55, p. 2310.Google Scholar
  3. 3.
    Nomura, M., Kaji, A., Miyamoto, W., and Ma, K., Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester, Mol. Carcinog., 2001, vol. 31, p. 83.CrossRefGoogle Scholar
  4. 4.
    Kubo, I., Xiao, P., and Fujita, K., Antifungal activity of octyl gallate: Structural criteria and mode of action, Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 347.CrossRefGoogle Scholar
  5. 5.
    Fung-Tomc, J., Bush, K., and Bonner, R.E.D., Antibacterial activity of BMS-180680, a new catechol-containing monobactam, Antimicrob, Agents Chemother., 1997, vol. 41, p. 1010.Google Scholar
  6. 6.
    Wang, W.L., Chai, S.C., and Ye, Q.Z., Synthesis and structure-function analysis of Fe(II)-form-selective antibacterial inhibitors of Escherichia coli methionine aminopeptidase, Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 1080.CrossRefGoogle Scholar
  7. 7.
    King, P.J., Peter, J.P., and Kim, W.E., Structure–activity relationships: Analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication, J. Med. Chem., 1999, vol. 42, p. 497.CrossRefGoogle Scholar
  8. 8.
    Robinson, W.E., Jr., Reinicke, M.G., and Chow, S.A., Inhibitors of HIV-1 replication that inhibit HIV integrase, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, p. 6326.CrossRefGoogle Scholar
  9. 9.
    Zhao, X.Z., Semenova, E.A., and Pommier, T.R., Jr., 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one-based HIV-1 integrase inhibitors, J. Med. Chem., 2008, vol. 51, p. 251.CrossRefGoogle Scholar
  10. 10.
    Schweigert, N., Zehnder, A.J.B., and Eggen, R.I.L., Acid/base and hydrogen bonding effects on the protoncoupled electron transfer of quinones and hydroquinones in acetonitrile: Mechanistic investigation by voltammetry, 1H NMR and computation, Environ. Microbial., 2001, vol. 3, p. 81.CrossRefGoogle Scholar
  11. 11.
    AMICBASE-ESSOIL Database on Natural Antimicrobials, Germany: Review Science, 1999–2002.Google Scholar
  12. 12.
    Halabalaki, M., Aligiannis, N., and Skaltsounis, A., Three new arylobenzofurans from Onobrychis ebenoides and evaluation of their binding affinity for the estrogen receptor, J. Nat. Prod., 2000, vol. 63, p.1672.CrossRefGoogle Scholar
  13. 13.
    Angerer, E., von Biberger, C., and Leitchtl, S., Studies on heterocyde-based pure estrogen antagonists, Ann. N.Y. Acad. Sci., 1995, vol. 761, p. 176.CrossRefGoogle Scholar
  14. 14.
    Teo, C.C., Kon, O.L., and Sim, K.Y., Synthesis of 2-(p-chlorobenzyl)-3-aryl-6-methoxybenzofurans as selective ligands for antiestrogen-binding sites. Effects on cell proliferation and cholesterol synthesis, J. Med. Chem., 1992, vol. 35, p. 1330.CrossRefGoogle Scholar
  15. 15.
    Gesser, G.A., Faghih, R., and Cowart, M.D., Structure–activity relationships of arylbenzofuran H3 receptor antagonists, Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 2559.CrossRefGoogle Scholar
  16. 16.
    Cowart, M., Pratt, J.K., and Hancock, A.A., A new class of potent non-imidazole H3 antagonists: 2-aminoethylbenzofurans, Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 689.CrossRefGoogle Scholar
  17. 17.
    Hocke, C., Prante, O., and Kuwert, T., Synthesis and radioiodination of selective ligands for the dopamine D3 receptor subtype, Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 3963.CrossRefGoogle Scholar
  18. 18.
    Hu, Y., Xiang, J.S., and Levin, L.I., Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis, Bioorg. Med. Chem., 2005, vol. 13, p. 6629.CrossRefGoogle Scholar
  19. 19.
    Ramirez, F. and Dershowitz, S., The structure of quinone-donor adducts, I. The action of triphenylphosphine on p-benzoquinone, 2,5-dichloro-p-benzoquinone and chloranil, J. Am. Chem. Soc., 1956, vol. 78, p. 5614.CrossRefGoogle Scholar
  20. 20.
    Nematollahi, D. and Rafiee, M., Diversity in electrochemical oxidation of dihydroxybenzoic acids in the presence of acetylacetone. A green method for synthesis of new benzofuran derivatives, Green Chem., 2005, vol. 7, p. 638.CrossRefGoogle Scholar
  21. 21.
    Maleki, A. and Nematollahi, D., An efficient electrochemical method for the synthesis of methylene blue, Electrochem. Commun., 2009, vol. 11, p. 2261.CrossRefGoogle Scholar
  22. 22.
    Steckhan, E., Arns, T., and Putter, H., Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses, Chemosphere, 2001, vol. 43, p. 63.CrossRefGoogle Scholar
  23. 23.
    Asami, R., Atobe, M., and Fuchigami, T., Electropolymerization of an immiscible monomer in aqueous electrolytes using acoustic emulsification, J. Am. Chem. Soc., 2005, vol. 127, p. 13160.CrossRefGoogle Scholar
  24. 24.
    Fry, J., Synthetic Organic Electrochemistry, New York: Wiley, 1989.Google Scholar
  25. 25.
    Sharma, L.K., Singh, S., and Singh, R.K.P., A Novel and facile environmentally benign oxidative electrocyclization of acylthiosemicarbazone into biodynamic 1,3,4-oxadiazoles, J. Indian Chem. Soc., 2011, vol. 88, p. 155.Google Scholar
  26. 26.
    Sharma, L.K., Singh, S., and Singh, R.K.P., Green synthesis of 2-amino-5-substituted-1,3,4-oxadiazoles at the platinum anode in acetic acid, Indian J. Chem. B, 2011, vol. 50, p. 110.Google Scholar
  27. 27.
    Sharma, L.K., Kumar, S., and Singh, R.K.P., Electrochemical synthesis of 5-substituted-2-amino (substituted amino)-1,3,4-oxadiazoles at the platinum electrode, Russ. J. Electrochem., 2010, vol. 46, no. 1, p. 37.CrossRefGoogle Scholar
  28. 28.
    Singh, S., Sharma, L.K., and Singh, R.K.P., Electrochemically initiated oxidative cyclization: A versatile route for the synthesis of 5-substituted 2-amino-1,3,4-oxadiazoles, Montash fur Chemie, 2012, vol. 143, p. 1427.CrossRefGoogle Scholar
  29. 29.
    Chechina, O.N., Electrosynthesis of dihydroperfluoropentanol in a water–ethanol solution, Russ. J. Electrochem., 2015, vol. 51, p. 1119.CrossRefGoogle Scholar
  30. 30.
    Hartmer, M.F. and Waldvogel, S.R., Electroorganic synthesis of nitriles via a halogen-free domino oxidation–reduction sequence, Chem. Commun., 2015, vol. 51, p. 16346.CrossRefGoogle Scholar
  31. 31.
    Nematollahi, D., Habibi, D., and Rahmati, M., A facile electrochemical method for synthesisof new benzofuran derivatives, J. Org. Chem., 2004, vol. 69, p. 2637.CrossRefGoogle Scholar
  32. 32.
    Fakhari, A.R., Nematollahi, D., and Shamsipur, M., Electrochemical synthesis of 5,6-dihydroxy-2-methyl-1-benzofuran-3-carboxylate derivatives, Tetrahedron, 2007, vol. 63, p. 3894.CrossRefGoogle Scholar
  33. 33.
    Davarani, S.S.H., Nematollahi, D., and Shamsipur, M., Electrochemical oxidation of 2,3-dimethylhydroquinone in the presence of 1,3-dicarbonyl compounds, J. Org. Chem., 2006, vol. 71, p. 2139.CrossRefGoogle Scholar
  34. 34.
    Nematollahi, D., Alimoradi, M., and WaqifHusain, S., Electrochemical synthesis of new catechol derivatives, Electrochim. Acta, 2006, vol. 51, p. 2620.CrossRefGoogle Scholar
  35. 35.
    Nematollahi, D., Workington, M.S., and Tammari, E., Electrochemical oxidation of catechol in the presence of cyclopentadiene. Investigation of electrochemically induced Diels–Alder reactions, Chem. Commun., 2006, vol. 15, p. 1631.CrossRefGoogle Scholar
  36. 36.
    Golabi, S.M. and Nematollahi, D.J., Electrochemical study of 3,4-dihydroxybenzoic acid and 4-tert-butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives, Electroanal. Chem., 1997, vol. 430, p. 141.CrossRefGoogle Scholar
  37. 37.
    Nematollahi, D. and Forooghi, Z., Electrochemical oxidation of catechols in the presence of 4-hydroxy-6- methyl-2-pyrone, Tetrahedron, 2002, vol. 58, p. 4949.CrossRefGoogle Scholar
  38. 38.
    Golabi, S.M. and Nematollahi, D., Electrochemical study of catechol and some 3-substituted catechols in the presence of 4-hydroxy coumarin: application to the electro-organic synthesis of new coumestan derivatives, J. Electroanal. Chem., 1997, vol. 420, p. 127.CrossRefGoogle Scholar
  39. 39.
    Nematollahi, D. and Rafiee, M.J., Electrochemical oxidation of catechols in the presence of acetylacetone, Electroanal. Chem., 2004, vol. 566, p. 31.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Jyoti Malviya
    • 1
  • R. K. P. Singh
    • 1
  • Shashi Kala
    • 1
  • L. K. Sharma
    • 1
  1. 1.Electrochemical Laboratory of Green Synthesis Department of ChemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations