Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 234–242 | Cite as

Modified Graphite Paste Electrode with Lewatit FO36 Nanoresin/Multi-Walled Carbon Nanotubes for Determination of Quercetin

Article
  • 7 Downloads

Abstract

In the present study, the electrochemical oxidation of quercetin (QUR) was investigated using a graphite paste electrode (GPE) modified with multi-walled carbon nanotube and Lewatit FO36 nanoresin (LFONR-MWCNT/GPE). LFONR-MWCNT/GPE could effectively a sensitive anodic peak at around 0.23 V (vs. SCE) in a 0.10 M phosphate buffer solution. Modified electrode revealed that activated with multiwalled carbon nanotube and LFONR was capable of facilitating electron transfer and increasing surface area. The electrochemical oxidation of QUR was studied using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Some kinetic parameters for electrochemical oxidation of QUR including total number of electrons (n) and standard heterogeneous rate constant (ks) were also determined. The calibration graph consisted of two linear segments of 1.8–25.0 μM, and 25.0–570.0 μM with a detection limit of 0.213 μM (based on 3Sb). The applicability of the method to juice of peach, red grape, sour cherry and Gincora tablets analysis was also evaluated.

Keywords

Lewatit FO36 nanoresin multi-walled carbon nanotubes quercetin real sample 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Anal. Biochem., 2010, vol. 407, p. 79.CrossRefGoogle Scholar
  2. 2.
    Goyal, R.N., Gupta, V.K., and Chatterjee, S., Sens._Actuators B, 2010, vol. 149, p. 252.CrossRefGoogle Scholar
  3. 3.
    Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., J. Hazard. Mater., 2010, vol. 183, p. 402.CrossRefGoogle Scholar
  4. 4.
    Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Sens._Actuators B, 2015, vol. 207, p. 216.CrossRefGoogle Scholar
  5. 5.
    Sirivastava, S.K., Gupta, V.K., and Jain, S., Anal. Chem., 1996, vol. 68, p. 1272.CrossRefGoogle Scholar
  6. 6.
    Jain, A.K., Gupta, V.K., Khurana, U., and Singh, L.P., Electroanalysis, 1997, vol. 9, p. 857.CrossRefGoogle Scholar
  7. 7.
    Goyal, R.N., Gupta, V.K., and Bachheti, N., Anal. Chim. Acta, 2007, vol. 597, p. 82.CrossRefGoogle Scholar
  8. 8.
    Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., J. Mol. Liq., 2013, vol. 177, p. 114.CrossRefGoogle Scholar
  9. 9.
    Gupta, V.K., Jain, A.K., and Maheshwari, G., Talanta, 2007, vol. 72, p. 1469.CrossRefGoogle Scholar
  10. 10.
    Jain, A.K., Gupta, V.K., Singh, L.P., and Khurana, U., Analyst, 1997, vol. 122, p. 583.CrossRefGoogle Scholar
  11. 11.
    Bravo, A. and Anacona, J.R., Transit. Metal. Chem., 2001, vol. 26, p. 20.CrossRefGoogle Scholar
  12. 12.
    Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., and Yano, M., Biosci. Biotechnol. Biochem., 1999, vol. 63, p. 896.CrossRefGoogle Scholar
  13. 13.
    Zhou, J., Wang, L.F., Wang, J.Y., and Tang, N., Transit. Metal. Chem., 2001, vol. 26, p. 57.CrossRefGoogle Scholar
  14. 14.
    Neergheen, V.S., Soobrattee, M.A., Bahorun, T., and Aruoma, O.I., J. Plant Physiol., 2006, vol. 163, p. 787.CrossRefGoogle Scholar
  15. 15.
    Yola, M.L., Atar, N., Üstündag, Z., and Solak, A.O., J. Electroanal. Chem., 2013, vol. 698, p. 9.CrossRefGoogle Scholar
  16. 16.
    Chen, X., Li, Q., Yu, Sh., Lin, B., and Wu, K., Electrochim. Acta, 2012, vol. 81, p. 106.CrossRefGoogle Scholar
  17. 17.
    Oliveira, A.C. and Mascaro, L.H., Int. J. Electrochem. Sci., 2011, vol. 6, p. 804.Google Scholar
  18. 18.
    Wang, M.Y., Zhang, D.E., Tong, Z.W., Xu, X.Y., and Yang, X.J., J. Appl. Electrochem., 2011, vol. 41, p. 189.CrossRefGoogle Scholar
  19. 19.
    He, J.B., Lin, X.Q., and Pan, J., Electroanalysis, 2005, vol. 17, p. 1681.CrossRefGoogle Scholar
  20. 20.
    Lin, X.Q., He, J.B., and Zha, Z.G., Sens._Actuators B, 2006, vol. 119, p. 608.CrossRefGoogle Scholar
  21. 21.
    Xu, M., Horsthemke, W., and Schell, M., Electrochim. Acta, 1993, vol. 38, p. 919.CrossRefGoogle Scholar
  22. 22.
    Walcarius, A., Anal. Chim. Acta, 1999, vol. 384, p. 1.CrossRefGoogle Scholar
  23. 23.
    Gligor, D., Balaj, F., Maicaneanu, A., Gropeanu, R., Grosu, I., Muresan, L., and Popescu, I.C., Chem. Phys., 2009, vol. 113, p. 283.Google Scholar
  24. 24.
    Eric, J., Davies, D., and Jabeen, N., J. Inclusion Phenom. Macrocyclic Chem., 2003, vol. 46, p. 57.CrossRefGoogle Scholar
  25. 25.
    Babaei, A., Zendehdel, M., Khalilzadeh, B., and Taheri, A., Colloids Surf. B, 2008, vol. 66, p. 226.CrossRefGoogle Scholar
  26. 26.
    Noroozifar, M., Khorasani-Motlagh, M., Akbari, R., and Bemanadi-Parizi, M., Biosens. Bioelectron., 2011, vol. 28, p. 56.CrossRefGoogle Scholar
  27. 27.
    Noroozifar, M., Khorasani-Motlagh, M., Bemanadi-Parizi, M., and Akbari, R., Ionics, 2013, vol. 19, p. 1317.CrossRefGoogle Scholar
  28. 28.
    Noroozifar, M., Khorasani-Motlagh, M., and Ahmadzadeh-Fard, P., J. Hazard. Mater., 2009, vol. 166, p. 1060.CrossRefGoogle Scholar
  29. 29.
    Cumbal, L. and Sengupta, A.K., Environ. Sci. Technol., 2005, vol. 39, p. 6508.CrossRefGoogle Scholar
  30. 30.
    Antelo, J., Avena, M., Fiol, S., López, R., and Arce, F., J. Colloid Interface Sci., 2005, vol. 285, p. 476.CrossRefGoogle Scholar
  31. 31.
    Appelo, C.A.J., Vander Weiden, M.J.J., Tournassat, C., and Charlet, L., Environ. Sci. Technol., 2002, vol. 36, p. 3096.CrossRefGoogle Scholar
  32. 32.
    Anawar, M.H., Akai, J., and Sakugawa, H., Chemosphere, 2004, vol. 54, p. 753.CrossRefGoogle Scholar
  33. 33.
    Stachowicz, M., Hiemstra, T., and Vanriemsdijk, H.W., Environ. Sci. Technol., 2007, vol. 41, p. 5620.CrossRefGoogle Scholar
  34. 34.
    Arai, Y., Sparks, L.D., and Davis, A.J., Environ. Sci. Technol., 2004, vol. 38, p. 817.CrossRefGoogle Scholar
  35. 35.
    Radu, T., Subacz, L.J., Phillippi, M.J., and Barnett, O.M., Environ. Sci. Technol., 2005, vol. 39, p. 7875.CrossRefGoogle Scholar
  36. 36.
    Rafati, L., Mahvi, A.H., Asgari, A.R., and Hosseini, S.S., Int. J. Environ. Sci. Technol., 2010, vol. 7(1), p. 147.CrossRefGoogle Scholar
  37. 37.
    Rafati, L., Nabizadeh, R., Mahvi, A.H., and Dehghani, M.H., Korean J. Chem. Eng., 2012, vol. 29, p. 473.CrossRefGoogle Scholar
  38. 38.
    Ahmadi, M., Teymouri, P., Setodeh A., Mortazavi, M.S., and Asgari, A., Environ. Eng._Management J., 2011, vol. 10, p. 1579.Google Scholar
  39. 39.
    Qiu, H., Zhang, S., Pan, B., Zhang, W., and Lv, L., J. Colloid Interface Sci., 2012, vol. 366, p. 37.CrossRefGoogle Scholar
  40. 40.
    Teixeira, M.F.S., Ramos, L.A., Fatibello-Filho, O., and Cavalheir, É.T.G., Anal. Bioanal. Chem., 2003, vol. 376, p. 214.CrossRefGoogle Scholar
  41. 41.
    Lupetti, K.O., Vieira, I.C., Vieira, H.J., and Fatibello-Filho, O., Analyst, 2002, vol. 127, p. 525.CrossRefGoogle Scholar
  42. 42.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.Google Scholar
  43. 43.
    Parient, F., Lorenzo, E., Tobalina, F., and Abruna, H.D., Anal. Chem., 1995, vol. 67, p. 3944.Google Scholar
  44. 44.
    Ensafi, A.A., Bahrami, H., Karimi-Maleh, H., and Mallakpour, Sh., Chin. J. Catal., 2012, vol. 33, p. 1919.CrossRefGoogle Scholar
  45. 45.
    Antoniadou, S., Jannakoudakis, A.D., and Theodoridou, E., Synth. Met., 1989, vol. 30, p. 0295.CrossRefGoogle Scholar
  46. 46.
    Velasco, J.G., Electroanalysis, 1997, vol. 9, p. 880.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Analytical Research Laboratory, Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations