Russian Journal of Electrochemistry

, Volume 54, Issue 3, pp 225–233 | Cite as

Chemical Oxidation of LiFePO4 in Aqueous Medium as a Method for Studying Kinetics of Delithiation

  • A. P. Kurbatov
  • F. I. Malchik
  • A. K. Galeyeva
  • D. S. Davydchenko
  • A. K. Rakhimova
  • M. S. Lepikhin
  • D. Kh. Kamysbayev
Article
  • 12 Downloads

Abstract

The kinetics of LiFePO4 oxidation by hydrogen peroxide in aqueous alkaline medium is studied with the use of potentiometric determination of lithium concentration in solution during delithiation. It is demonstrated that the lithium transfer through the reaction-product layer is controlled by diffusion. The activation energy and the diffusion coefficient of the species transferred in the solid phase during the chemical reaction of oxidative delithiation are determined and the parameters of this processes are analyzed.

Keywords

cathode lithium iron phosphate kinetics aqueous solution oxidation activation energy diffusion coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Padhi, A., Nanjundaswamy, K., and Goodenough, J., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1148.Google Scholar
  2. 2.
    Herle, P., Ellis, B., Coombs, N., and Nazar, L., Nanonetwork electronic conduction in iron and nickel olivine phosphates, Nat. Matter, 2004, vol. 3, p. 147.CrossRefGoogle Scholar
  3. 3.
    Molenda, J., Ojczyk, W., and Marzec, J., Electrical conductivity and reaction with lithium of LiFe1−yMnyPO4 olivine-type cathode materials, J. Power Sources, 2007, vol. 174, p. 689.CrossRefGoogle Scholar
  4. 4.
    Franger, S., Le Gras, F., Bourbon, C., and Rouault, H., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003, vol. 119, p. 252.CrossRefGoogle Scholar
  5. 5.
    Franger, S., Le Gras, F., Bourbon, C., and Rouault, H., Optimized lithium iron phosphate for high-rate electrochemical applications, J. Electrochem. Soc., 2004, vol. 151, p. 1024.CrossRefGoogle Scholar
  6. 6.
    Hoshi, Y., Narita, Y., Honda, K., Ohtaki, T., Shitanda, I., and Itagaki, M., Optimization of reference electrode position in a three-electrode cell for impedance measurements in lithium-ion rechargeable battery by finite element method, J. Power Sources, 2015, vol. 288, p. 168.CrossRefGoogle Scholar
  7. 7.
    Scipioni, R., Jørgensen, S., Ngo, D.-T., Simonsen, S.B., Liu, Zh., Yakal-Kremsi, K.J., Wang, H., Hjelm, J., Norby, P., Barnett, S.A., and Jensen, S.H., Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes, J. Power Sources, 2016, vol. 307, p. 259.CrossRefGoogle Scholar
  8. 8.
    Weichert, K., Sigle, W., van Aken, P.A., Jamnik, J., Zhu, C., Amin, R., Acartürk, T., Starke, U., and Maier, J., Phase boundary propagation in large LiFePO4 single crystals on delithiation, J. Am. Chem. Soc, 2012, vol. 134, p. 2988.CrossRefGoogle Scholar
  9. 9.
    Safronov, D.V., Pinus, I.Yu., Profatilova, I.A., Tarnopol’skii, V.A., Skundin, A.M., and Yaroslavtsev, A.B., Kinetics of lithium deintercalation from LiFePO4, Inorg. Mat, 2011, vol. 3, vol. 47, p. 303.CrossRefGoogle Scholar
  10. 10.
    Trinh, N.D., Liang, G., Gauthier, M., and Schougaard, B., A rapid solution method to determine the charge capacity of LiFePO4, J. Power Sources, 2012, vol. 200, p. 92.CrossRefGoogle Scholar
  11. 11.
    Jones, J.L., Hang, J.T., and Meng, Y.S., Intermittent X-ray diffraction study of kinetics of delithiation in nano-scale LiFePO4, J. Power Sources, 2009, vol. 189, p. 702.CrossRefGoogle Scholar
  12. 12.
    Lepage, D., Sobh, F., Kuss, C., Liang, G., and Schougaard, S.B., Delithiation kinetics study of carbon coated and carbon free LiFePO4, J. Power Sources, 2014, vol. 256, p. 61.CrossRefGoogle Scholar
  13. 13.
    GOST (State Standard) 61-2003 Indices of Accuracy, Correctness, Precision of Procedures of Quantitative Chemical Analysis. Estimation Methods, 2003.Google Scholar
  14. 14.
    Chan, H.-H., Chang, Ch.-Ch., Wu., H.-Ch., Guo, Zh.-Zh., Yang., M.-H., Chiang, Y.-P., Shue, H.-Sh., and Wu, N.-L., Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction, J. Power Sources, 2006, vol. 158, p. 550.CrossRefGoogle Scholar
  15. 15.
    Huang, Y., Ren, H., Peng, Zh., and Zhou, Y., Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method, Electrochim. Acta, 2009, vol. 55, p. 311.CrossRefGoogle Scholar
  16. 16.
    Zhang, W.J., Structure and performance of LiFePO4 cathode materials: A review, J. Power Sources, 2011, vol. 196, p. 2962.CrossRefGoogle Scholar
  17. 17.
    Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, p. 826.CrossRefGoogle Scholar
  18. 18.
    Wittingham, M.S., Electrical energy storage and intercalation chemistry, Science, 1976, vol. 192, p. 1126.CrossRefGoogle Scholar
  19. 19.
    Oyama, G., Yamada, Y., Natsui, R.I., Nishimura, S.I., and Yamada, A., Kinetics of nucleation and growth in two-phase electrochemical reaction of LixFePO4, J. Phys. Chem. C, 2012, vol. 116, p. 7306.CrossRefGoogle Scholar
  20. 20.
    Allen, J.L., Jow, T.R., and Wolfenstine, J., Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition, Chem. Matter., 2007, vol. 19, p. 2108.CrossRefGoogle Scholar
  21. 21.
    Allen, J.L., Jow, T.R., and Wolfenstine, J., Analysis of the FePO4 to LiFePO4 phase transition, Solid State Electrochem., 2008, vol. 12, p. 1031.CrossRefGoogle Scholar
  22. 22.
    Morgan, D., Van der Ven, A., and Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett., 2008, vol. 12, p. 1031.CrossRefGoogle Scholar
  23. 23.
    Li, J.Y., Yao, W.L., Martin, S., and Vaknin, D., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries, Solid State Ionics, 2004, vol. 7, p. 30.Google Scholar
  24. 24.
    Wang, L., Zhou, F., Meng, Y.S., and Ceder, G., Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B, 2007, vol. 30, p. 76.Google Scholar
  25. 25.
    Rozovskii, A.Ya., Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: Khimiya, 1974.Google Scholar
  26. 26.
    Criado, J.M., About remarks on the application of the combined Kolmogorov–Erofeev–Kazeev–Avrami–Mampel equation in the kinetics of non-isothermal transformations, J. Thermal Analysis, 1980, vol. 19, p. 381.CrossRefGoogle Scholar
  27. 27.
    Ellis, B.L., Lee, K.T., and Nazar, L.F. Positive electrode materials for Li-ion and Li-batteries, Chem. Mater, 2010, vol. 22, p. 691.CrossRefGoogle Scholar
  28. 28.
    Sakovich, G.V., Zh. Fiz. Khim., 1959, no. 33, p. 636.Google Scholar
  29. 29.
    Yamada, Y., Hiroshi, K., Sonoyama, N., and Kanno, R., Phase change in LixFePO4, Electrochem. Solid-State Lett., 2005, vol. 8, p. 409.CrossRefGoogle Scholar
  30. 30.
    Zhu, Y. and Wang, C., Galvanostatic intermittent titration technique for phase-transformation electrodes, J. Phys. Chem. C, 2010, vol. 114, p. 2830.CrossRefGoogle Scholar
  31. 31.
    Tang, K., Yu, X., Sun, J., Li, H., and Huang, X., Kinetic analysis on LiFePO4 thin films by CV,GITT, and EIS, Electrochim. Acta, 2011, vol. 56, p. 4869.CrossRefGoogle Scholar
  32. 32.
    Manjunatha, H., Venkatesha, T.V., and Suresh, G.S., Kinetics of electrochemical insertion of lithium ion into LiFePO4 from aqueous 2 M Li2SO4 solution studied by potentiostatic intermittent titration technique, Electrochim. Acta, 2011, vol. 58, p. 247.CrossRefGoogle Scholar
  33. 33.
    Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A., Experimental visualization of lithium diffusion in LixFePO4, Nat. Matter, 2008, vol. 7, p. 707.CrossRefGoogle Scholar
  34. 34.
    Maxish, T., Zhou, F., and Ceder, G., Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies, Phys. Rev., 2006, vol. 73, p. 104301.CrossRefGoogle Scholar
  35. 35.
    Morgan, D., Van der Ven, A., and Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett., 2004, vol. 7, p. 30.CrossRefGoogle Scholar
  36. 36.
    Scheidemantel, T.J., Ambrosch, D.C., Thonhauser, T., Badding, J.V., and Sofo, J., Transport coefficients from first-principles calculations, Phys. Rev. 2003, vol. 68, p. 125210.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Kurbatov
    • 1
    • 2
  • F. I. Malchik
    • 1
    • 2
  • A. K. Galeyeva
    • 1
    • 2
  • D. S. Davydchenko
    • 1
  • A. K. Rakhimova
    • 1
    • 2
  • M. S. Lepikhin
    • 1
  • D. Kh. Kamysbayev
    • 2
  1. 1.Center of Physical and Chemical Methods of Research and AnalysisAlmatyKazakhstan
  2. 2.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations